М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
13032005mahri
13032005mahri
05.03.2021 08:09 •  Математика

Кто ответит правильно дам лучший ответ ❤️​


Кто ответит правильно дам лучший ответ ❤️​

👇
Ответ:
IgrochishkaRossiy
IgrochishkaRossiy
05.03.2021

\dfrac{11}{6+\dfrac{17}{4-\dfrac{3}{2+\dfrac{1}{1-\dfrac{2}{3} } } } } }

=

\dfrac{11}{6+\dfrac{17}{4-\dfrac{3}{2+\dfrac{1}{\dfrac{1}{3} } } } } }

=

\dfrac{11}{6+\dfrac{17}{4-\dfrac{3}{2+3 } } } }

=

\dfrac{11}{6+\dfrac{17}{4-\dfrac{3}{5} } } }

=

\dfrac{11}{6+\dfrac{17}{\dfrac{17}{5} } } } }

=

\dfrac{11}{6+5}=\dfrac{11}{11}=1

Пошаговое объяснение:


Кто ответит правильно дам лучший ответ ❤️​
4,4(43 оценок)
Открыть все ответы
Ответ:
marijamihaylow
marijamihaylow
05.03.2021

Пошаговое объяснение:

Пусть R — радиус шара.

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

4,6(39 оценок)
Ответ:
leraaleksan
leraaleksan
05.03.2021

Пошаговое объяснение:

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

4,7(36 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ