Вероятность того, что из первого ящика вынута стандартная деталь (событие А),,
Р (А) = 8/10 = 0,8.
Вероятность того, что из второго ящика вынута стандартная деталь (событие В),
Р (В) =7/10 = 0,7.
Вероятность того, что из третьего ящика вынута стандартная деталь (событие С),
Р (С) =9/10 = 0,9.
Так как события А, В и С независимые в совокупности, то искомая вероятность (по теореме умножения) равна
Р (ABC) = Р(А)Р(В)Р(С) = 0,8 • 0,7 • 0,9 = 0,504.
Приведем пример совместного применения теорем сложения и умножения.
Пошаговое объяснение:
Уравнение прямой 2х – 3у = 6 преобразуем в уравнение с угловым коэффициентом: у = (2х – 6)/3 = (2/3)х - 0,5.
Находим точку С на оси Оу (при этом х = 0): С(0; -0,5).
Разность координат при параллельном переносе:
Δх = 1 - (-1) = 2.
Δу = -1 - 1= -2.
Точка С (0; -0,5) на прямой перейдёт в точку:
Д(0 + 2 = 2; -0,5 + (-2) = -2,5) = (2; -2,5).
Угловой коэффициент её сохранится и уравнение примет вид:
у = (2/3)х + в. Для определения параметра в подставим координаты точки Д(2; -2,5).
-2,5 = (2/3)*2 + в,
в = (-5/2) - (4/3) = -23/6.
ответ: у = (2/3)х - (23/6) или 4х - 6у - 23 = 0.