dsxbcktnt cos
tckb b=1 c=3 L=1,2Пошаговое объяснение:
Надеюсь
Найдем сначала общее решение соответствующего однородного дифференциального уравнения:

Используя замену
, получим характеристическое уравнение


Общее решение однородного дифференциального уравнения:

Рассмотрим функцию:
. Здесь
откуда
и
. Сравнивая α, β с корнями характеристического уравнения, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение:


Приравниваем коэффициенты при cos2x и sin2x, получаем систему:

Общее решение линейного неоднородного дифференциального уравнения:

Осталось решить задачу Коши, подставляя начальные условия


Частное решение задачки Коши:

Найдем сначала общее решение соответствующего однородного дифференциального уравнения:

Используя замену
, получим характеристическое уравнение


Общее решение однородного дифференциального уравнения:

Рассмотрим функцию:
. Здесь
откуда
и
. Сравнивая α, β с корнями характеристического уравнения, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение:


Приравниваем коэффициенты при cos2x и sin2x, получаем систему:

Общее решение линейного неоднородного дифференциального уравнения:

Осталось решить задачу Коши, подставляя начальные условия


Частное решение задачки Коши:

cos a/2 =^ ( такая стрелочка вправо)
1/cos a/2 = 6/4,8 ;
6 cos = 4,8 ;
cos = 0,8 ;
ответ: 0,8 .
Пошаговое объяснение:
Надеюсь