№1
а)Число 4
Оно делится на 2,1,4.
Один - не считают.Остаются 2 и 4.Они делятся на 2, значит, они четные.
б)Это утверждение неверно.
Возьмем нечетное число 5.Оно не делится на 3.На 3 могут делиться и четные числа.А вообще, судя по признаку делимости, на 3 делятся только те числа, сумма цифр которых делится на 3.
№2
а)5*29+5*17=5(29+17)=5(46)
Это выражение делится однозначно на 5, 46, 2, 23.
Ты не дописал число в вопросе.Но сделай вывод из этих чисел.
б)
41*7-17*7=7(41-17)=7(24)
Да, делится, так как один из множителей делится на 7.
Так же это выражение делится на 24, 6,4, 2,3,8,12
Будут вопросы, пиши!
1) неравенства х ≥ -8 и х + 3 ≥ -5; являются равносильными, так как 2-е неравенство преобразуется в х ≥ -8:
х + 3 ≥ -5 ⇒ х ≥ -5 - 3 ⇒ х ≥ - 8
2) неравенства у ≤ 10 и у - 1 ≤ 9; являются равносильными, так как 2-е неравенство преобразуется в у ≤ 10:
у - 1 ≤ 9; ⇒ у ≤ 9 + 1 ⇒ у ≤ 10
3) неравенства х > 5 и 5х > 25 являются равносильными, так как 2-е неравенство преобразуется в
5х > 25 ⇒ x > 25 : 5 ⇒ x > 5
4) неравенства х < 3 и -3х > -9 являются равносильными, так как 2-е неравенство преобразуется в
-3х > -9 ⇒ -х > -9 : 3 ⇒ -x > -3 ⇒ x < 3
5) неравенства х < 20 и 0.5 (х+3) > 10 не являются равносильными, так как 2-е неравенство преобразуется в
0.5 (х+3) > 10 ⇒ 0,5х + 1,5 > 10 ⇒ 0.5x > 10 - 1.5 ⇒ 0.5x > 8.5 ⇒
⇒ x > 17
6) неравенства у ≥ -16 и -0.25у ≤ 4 являются равносильными, так как 2-е неравенство преобразуется в
-0.25у ≤ 4 ⇒ -y ≤ 16 ⇒ y ≥ - 16