300 м² + 2 га < 600 а : 2
[1 га = 10 000 м²
2 га = 2 * 10 000 = 20 000 м²
300 м² + 2 га = 300 м² + 20 000 м² = 20 300 м²
600 а : 2 = 300 ар [1 ар = 100 м²]
300 ар = 300 * 100 = 30 000 м²
2 см³ - 100 мм³ > 1 дм³ - 200 см²
[1 см = 10 мм]
[1 см³ = 1 см * 1 см * 1 см = 10 мм * 10 мм * 10 мм = 1000 мм³]
2 см³ = 2 * 1000 = 2000 мм³
2 см³ - 100 мм³ = 2000 мм³ - 100 мм³ = 1900 мм³
[1 дм = 10 см]
[1 дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
1 дм³ - 200 см³ = 1000 см³ - 200 см³ = 800 см³
1000 см³ - 1 дм³ < 800 м² : 4 м
[1 дм = 10 см]
[1 дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
1000 см³ - 1 дм³ = 1000 см³ - 1000 см³ = 0
800 м² : 4 м = 200 м
2000 дм³ + 200 м³ > 200 см³ + 2000 см³
[1 м = 10 дм]
[1 м³ = 1 м * 1 м * 1 м = 10 дм * 10 дм * 10 дм = 1000 дм³]
200 м³ = 200 * 1000 = 200 000 дм³
2000 дм³ + 200 м³ = 2000 дм³ + 200 000 дм³ = 202 000 дм³
200 см³ + 2000 см³ = 2200 см³
[1 дм = 10 см]
[1дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
202 000 дм³ = 202 000 * 1000 = 202 000 000 см³
Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности:
; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом
; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения: