вот
Пошаговое объяснение: y'' + 10y' + 24y = 6e^(-6x) + 168x + 118
Неоднородное уравнение 2 порядка.
y(x) = y0 + y* (решение однородного + частное решение неоднородного).
Решаем однородное уравнение
y'' + 10y' + 24y = 0
Характеристическое уравнение
k^2 + 10k + 24 = 0
(k + 4)(k + 6) = 0
y0 = C1*e^(-4x) + C2*e^(-6x)
Находим частное решение неоднородного уравнения
-6 - один из корней характеристического уравнения, поэтому
y* = A*x*e^(-6x) + B1*x + B2
y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1
y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)
Подставляем в уравнение
-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118
(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =
= 6e^(-6x) + 168x + 118
Приводим подобные в скобке при e^(-6x)
-12A + 10A + 60A*x - 60A*x = -2A
Подставляем
-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118
Коэффициенты при одинаковых множителях должны быть равны
{ -2A = 6
{ 24B1 = 168
{ 10B1 + 24B2 = 118
Решаем
{ A = -3
{ B1 = 7
{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2
y* = -3x*e^(-6x) + 7x + 2
ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
1) 2м 2^3=8
2) 3м 3^3=27
3) 4м 4^3=64
4) 5м 5^3=125