Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно: 1. Привести дроби к общему знаменателю; 2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Для того чтобы найти точки перегиба данной функции найдем первые производные от данной функции по х и по y:
∂Z / ∂x = Z'x = (x^3 + y^3 - 3xy)'= 3x^2 - 3y;
∂Z / ∂y = Z'y = (x^3 + y^3 - 3xy)' = 3y^2 - 3x;
Решим систему из двух уравнений:
3x^2 - 3y = 0;
3y^2 - 3x = 0;
x^2 - y = 0;
y^2 - x = 0;
x^2 = y;
y^2 = x;
x^4 = x;
x(x^3 - 1) = 0;
x^3 = 1; x1 = 0;
x2 = 1^(1 / 3) = 1, подставим в первое уравнение системы:
y1 = x^2 = (1)^2 = 1; y2 = 0;
Точки перегиба (1 ; 1) и (0; 0);
z1 = 1^3 + 1^3 - 3 * 1 * 1 = 1 + 1 - 3 = - 1;
z2 = 0;
ответ: (1; 1; - 1) и (0; 0; 0).