1.Система уравнения методом гаусса 2. Найти закон движения точки, если ускорение 3.Точка движется прямолинейно по закону. В какой момент времени скорость окажется равной нулю 4. скорость движения точки. Найти путь пройденной точкой от начала движения до ее остановки 5. скорость движения точки. Найти ее путь за вторую сек
Все-таки напишу решение. Если в каждом столбце по 3 закрашенных клетки, то всего 3*110=330 закрашенных клеток. Если в каждом столбце по 4 закрашенных клетки, то всего 4*110=440 закрашенных клеток. Значит, количество клеток 330 <= N <= 440. Пусть будет a столбцов по 4 клетки и b столбцов по 3 клетки. 4a + 3b = N a + b = 110; b = 110 - a А по строкам пусть x строк по 7 клеток и y строк по 1 клетке. 7x + y = N x + y = 110; y = 110 - x Получаем такое уравнение с 2 неизвестными: 4a + 3(110 - a) = 7x + 110 - x = N --> min 4a + 330 - 3a = 6x + 110 a + 220 = 6x Наименьшее решение: x = 37, потому что 37*6 = 222 - наименьшее кратное 6, больше 220 Тогда а = 6x - 220 = 222 - 220 = 2, b = 110 - 2 = 108; y = 110 - 37 = 73. N = 4a + 3b = 4*2 + 3*108 = 7x + y = 7*37 + 73 = 332 ответ: N = 332 Закрашено всего 394 клетки, это 44 строки по 7 и 86 строк по 1 клетке, или 4 столбца по 4 и 126 столбцов по 3 клетки.
Если в каждом столбце по 3 закрашенных клетки, то всего 3*110=330 закрашенных клеток. Если в каждом столбце по 4 закрашенных клетки, то всего 4*110=440 закрашенных клеток. Значит, количество клеток 330 <= N <= 440. Пусть будет a столбцов по 4 клетки и b столбцов по 3 клетки. 4a + 3b = N a + b = 110; b = 110 - a А по строкам пусть x строк по 7 клеток и y строк по 1 клетке. 7x + y = N x + y = 110; y = 110 - x Получаем такое уравнение с 2 неизвестными: 4a + 3(110 - a) = 7x + 110 - x = N --> min 4a + 330 - 3a = 6x + 110 a + 220 = 6x Наименьшее решение: x = 37, потому что 37*6 = 222 - наименьшее кратное 6, больше 220 Тогда а = 6x - 220 = 222 - 220 = 2, b = 110 - 2 = 108; y = 110 - 37 = 73. N = 4a + 3b = 4*2 + 3*108 = 7x + y = 7*37 + 73 = 332 ответ: N = 332
Если в каждом столбце по 3 закрашенных клетки, то всего 3*110=330 закрашенных клеток.
Если в каждом столбце по 4 закрашенных клетки, то всего 4*110=440 закрашенных клеток.
Значит, количество клеток 330 <= N <= 440.
Пусть будет a столбцов по 4 клетки и b столбцов по 3 клетки.
4a + 3b = N
a + b = 110; b = 110 - a
А по строкам пусть x строк по 7 клеток и y строк по 1 клетке.
7x + y = N
x + y = 110; y = 110 - x
Получаем такое уравнение с 2 неизвестными:
4a + 3(110 - a) = 7x + 110 - x = N --> min
4a + 330 - 3a = 6x + 110
a + 220 = 6x
Наименьшее решение:
x = 37, потому что 37*6 = 222 - наименьшее кратное 6, больше 220
Тогда а = 6x - 220 = 222 - 220 = 2, b = 110 - 2 = 108; y = 110 - 37 = 73.
N = 4a + 3b = 4*2 + 3*108 = 7x + y = 7*37 + 73 = 332
ответ: N = 332
Закрашено всего 394 клетки, это 44 строки по 7 и 86 строк по 1 клетке, или 4 столбца по 4 и 126 столбцов по 3 клетки.