М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shkorolewsky20
shkorolewsky20
22.09.2022 13:29 •  Математика

периметр треугольника равен 60 см. две его стороны относятся как 5:8, а угол между ними 60°. найдите стороны треугольника.​

👇
Ответ:
MrVyacheslav228
MrVyacheslav228
22.09.2022

Відповідь: 15, 21, 24

Покрокове пояснення: фото


периметр треугольника равен 60 см. две его стороны относятся как 5:8, а угол между ними 60°. найдите
4,7(47 оценок)
Открыть все ответы
Ответ:

Нет, не обязательно

Пошаговое объяснение:

На примере. Возьмём прямоугольник 5 столбцов и 3 строки - 15 квадратиков. После удаления двух столбцов получаем 15 - 2*3 = 9. (квадрат 3 на 3) После прибавление трех строк: 9 + 3*3 = 18 квадратиков. Количество увеличилось.

Повторим. 18 квадратиков - 2 столбца по 6 квадратиков = 18-12 = 6. Получим прямоугольник 1 столбец на 6 строк, 6 квадратиков соответственно

Прибавим три строки - столбец один, значит + 3 квадратика — получили 9 элементов. Количество квадратиков уменьшилось.

4,4(78 оценок)
Ответ:
aleksminaev
aleksminaev
22.09.2022

основные вопросы, рассматриваемые на лекции:

1. постановка численного дифференцирования

2. численное дифференцирование на основе интерполяционных формул ньютона

3. оценка погрешности дифференцирования с многочлена ньютона

4. численное дифференцирование на основе интерполяционной формулы лагранжа

5. оценка погрешности численного дифференцирования с многочлена лагранжа

постановка численного дифференцирования

функция y = f(x) задана таблицей:

на отрезке [a; b] в узлах  a = x0  < x1  < x2  < : < xn  =b< /x.  требуется найти приближенное значение производной этой функции в некоторой точке  х*    [a; b]. при этом  х*  может быть как узловой точкой, так и расположенной между узлами.

·  численное дифференцирование на основе интерполяционных формул ньютона

считая узлы таблицы равноотстоящими, построим интерполяционный полином ньютона. затем продифференцируем его, полагая, что f '(x)    φ'(x) на [a; b]:

  (1)  формула значительно , если производная ищется в одном из узлов таблицы: х* = xi = x0 + ih:     (2)  подобным путём можно получить и производные функции f (x) более высоких порядков. однако, каждый раз вычисляя значение производной функции f (x) в фиксированной точке х в качестве х0 следует брать ближайшее слева узловое значение аргумента.

·  численное дифференцирование на основе интерполяционной формулы лагранжа

запишем формулу лагранжа для равноотстоящих узлов в более удобном виде для дифференцирования:     затем, дифференцируя по х как функцию от t, получим:     пользуясь этой формулой можно вычислять приближённые значения производной таблично-заданной функции f (x) в одном из равноотстоящих узлов.  аналогично могут быть найдены значения производных функции f(x) более высоких порядков.

4,4(90 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ