Нет, не обязательно
Пошаговое объяснение:
На примере. Возьмём прямоугольник 5 столбцов и 3 строки - 15 квадратиков. После удаления двух столбцов получаем 15 - 2*3 = 9. (квадрат 3 на 3) После прибавление трех строк: 9 + 3*3 = 18 квадратиков. Количество увеличилось.
Повторим. 18 квадратиков - 2 столбца по 6 квадратиков = 18-12 = 6. Получим прямоугольник 1 столбец на 6 строк, 6 квадратиков соответственно
Прибавим три строки - столбец один, значит + 3 квадратика — получили 9 элементов. Количество квадратиков уменьшилось.
основные вопросы, рассматриваемые на лекции:
1. постановка численного дифференцирования
2. численное дифференцирование на основе интерполяционных формул ньютона
3. оценка погрешности дифференцирования с многочлена ньютона
4. численное дифференцирование на основе интерполяционной формулы лагранжа
5. оценка погрешности численного дифференцирования с многочлена лагранжа
постановка численного дифференцированияфункция y = f(x) задана таблицей:
на отрезке [a; b] в узлах a = x0 < x1 < x2 < : < xn =b< /x. требуется найти приближенное значение производной этой функции в некоторой точке х* [a; b]. при этом х* может быть как узловой точкой, так и расположенной между узлами.
· численное дифференцирование на основе интерполяционных формул ньютона
считая узлы таблицы равноотстоящими, построим интерполяционный полином ньютона. затем продифференцируем его, полагая, что f '(x) φ'(x) на [a; b]:
(1) формула значительно , если производная ищется в одном из узлов таблицы: х* = xi = x0 + ih: (2) подобным путём можно получить и производные функции f (x) более высоких порядков. однако, каждый раз вычисляя значение производной функции f (x) в фиксированной точке х в качестве х0 следует брать ближайшее слева узловое значение аргумента.
· численное дифференцирование на основе интерполяционной формулы лагранжа
запишем формулу лагранжа для равноотстоящих узлов в более удобном виде для дифференцирования: затем, дифференцируя по х как функцию от t, получим: пользуясь этой формулой можно вычислять приближённые значения производной таблично-заданной функции f (x) в одном из равноотстоящих узлов. аналогично могут быть найдены значения производных функции f(x) более высоких порядков.
Відповідь: 15, 21, 24
Покрокове пояснення: фото