Пусть расстояние между пунктами А и В равно S км, скорость первого (из А) х км/ч, второго - у км/ч. Первый полпути за (S/2)/x часов. За это время второй у=S*y/(2*x) км. Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км . S*(2*x-y)/(2*x)=24 (1). Второй полпути за (S/2)/у часов. За это время первый у)*х=S*х/(2*у) км Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км S*(2*у-х)/(2*у)=15 (2). Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у. Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a. (2*a-1)/(2-a)=1,6*a 2*a-1=3,2*a-1,6*a^2 1,6*a^2-1,2*a-1=0 8*a^2-6*a-5=0 a1=(3/8)+√(9/64+5/8)=5/4 a2=(3/8)-√9/64+5/8)=-1/2 не удов усл х/у=5/4 или у=0,8*х. Подставив это в уравнение (1) или (2) получим S=40 км. Когда первый полпути, второй км. Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
Возможно, можно сделать все проще, но моя идея такая: 1) Переливаем из 3-го стакана (Самого большого) в 1-й (3л.) Теперь у нас все так: 1 - 3л., 2 - 0 л., 3 - 17 л. 2) Переливаем из 1-го во второй, получаем: 1 - 0 л., 2 - 3 л., 3 - 17 л. 3) Снова из самого большого (3) льём в самый маленький (1), получаем: 1 - 3л, 2 - 3л, 3 - 14 л. 4) Из 1 льём во второй, получаем: 1 - 1л (Т.к. второй полностью наполнен), 2 - 5 л., 3 - 14л. 5) Выливаем из 2 в 3. Затем льём из 1 во второй, получаем: 1 - 0л, 2-1л, 3- 19 л. 6) Из 3 льём в 1, из 1 во второй. Получаем: 1 - 0л, 2 - 4л, 3 - 16л.
х*х+4=29
Х2=25
х=+,-5
5*5+4=29
-5*-5+4=29