
по свойству диагонали прямоугольного параллелепипеда квадрат диагонали равен сумме квадратов трех его измерений, поэтому
d²=8²+6²+3²; d=64+36+9=109, d=√109/cм/
Площадь полной поверхности равна сумме площадей оснований и площади боковой поверхности. 2*(аb+bc+ac)=2*(48+18+24)=2*180/cм²/
Площадь диагонального сечения- это площадь прямоугольника с со сторонами 10см и 3см, т.к. диагональ основания равна √(6²+8²)=10 /см/, площадь 30 см²
Если в основании лежит прямоугольник со сторонами 8 и 3, площадью диагонального сечения будет √(8²+3²)*6=6√73/см²/, а если в основании стороны 6 и 3, то площадь√(6²+3²)*8=√45*8=24√5/см²/
Проекцией диагонали параллелепипеда будет диагональ основания. т.е. диагональ прямоугольника, лежащего в основании.
x^2+(m-2)x-(m+3)=0
D = (m-2)^2 + 4(m+3) = m^2-4m+4+4m+12 = m^2 +16
x1 = [2-m + V(m^2 +16)] / 2, x2 = [2-m - V(m^2 +16)] / 2
Сумма квадратов корней:
x1^2+x2^2 = ([2-m + V(m^2 +16)]^2 + [2-m - V(m^2 +16)]^2) / 4 =
= [(2-m)^2 + 2*(2-m)*V(m^2 +16) + (m^2 +16) + (2-m)^2 - 2*(2-m)*V(m^2 +16) + (m^2 +16)] / 4 =
= [2*(2-m)^2 + 2*(m^2 +16)] / 4 = [(2-m)^2 + (m^2 +16)] / 2 = (4-4m+m^2+m^2+16) / 2 =
= (2m^2-4m+20) / 2 = m^2-2m+10.
Нам надо, чтобы эта сумма была минимальной. График квадратного уравнения - парабола, минимум которой находится в вершине, то есть в точке, где m = -b/2a = 2/2 = 1. Сама сумма равна S = 1-2+10 = 9.
ответ: S = 9 при m = 1.