K=x
M=10+x
N=10+40+x=50+x
x+50+x+10+x=180
60+3x=180
3x=120
x=40
K=40
M=50
N=90
Задание № 6:
В прямоугольный треугольник ABC с прямым углом A и катетами AB=2, AC=6 вписан квадрат ADEF. Найдите отношение площади треугольника EFC к площади квадрата ADEF.
РЕШЕНИЕ: Пусть сторона квадрата х. Тогда FC=(6-x).
Площадь треугольника EFC=CF*FE/2=(6-x)x/2
Площадь квадрата равна х^2.
Их отношение: ((6-x)x/2)/х^2=(6-x)/2х.
Так как треугольники САВ и CFE подобны (по прямому углу и углу С), то составляем пропорцию:
АС/FC=AB/FE
6/(6-x)=2/x
6x=2(6-x)
6x=12-2x
8x=12
x=1.5
(6-x)/2х=(6-1.5)/(2*1.5)=1.5
ОТВЕТ: 1.5
Задание № 6:
В прямоугольный треугольник ABC с прямым углом A и катетами AB=2, AC=6 вписан квадрат ADEF. Найдите отношение площади треугольника EFC к площади квадрата ADEF.
РЕШЕНИЕ: Пусть сторона квадрата х. Тогда FC=(6-x).
Площадь треугольника EFC=CF*FE/2=(6-x)x/2
Площадь квадрата равна х^2.
Их отношение: ((6-x)x/2)/х^2=(6-x)/2х.
Так как треугольники САВ и CFE подобны (по прямому углу и углу С), то составляем пропорцию:
АС/FC=AB/FE
6/(6-x)=2/x
6x=2(6-x)
6x=12-2x
8x=12
x=1.5
(6-x)/2х=(6-1.5)/(2*1.5)=1.5
ОТВЕТ: 1.5
х - угол М
тогда х+40 - угол N
х-10 - угол К
х+х+40+х-10=180
3х+30=180
3х+150
х=150:3= 50
угол М равен 50
угол N равен 50 + 40=90
угол К равен 50-10= 40
ответ: 50, 90.40