Пусть х км/ч - скорость на обратном пути, тогда (х + 3) км/ч - от дома до станции; 30 мин = 0,5 ч. Уравнение:
30/х - 30/(х+3) = 0,5
30 · (х + 3) - 30х = 0,5 · х · (х + 3)
30х + 90 - 30х = 0,5х² + 1,5х
90 = 0,5х² + 1,5х
0,5х² + 1,5х - 90 = 0
Разделим обе части уравнения на 0,5
х² + 3х - 180 = 0
D = b² - 4ac = 3² - 4 · 1 · (-180) = 9 + 720 = 729
√D = √ 729 = 27
х₁ = (-3-27)/(2·1) = (-30)/2 = -15 (не подходит, т.к. < 0)
х₂ = (-3+27)/(2·1) = 24/2 = 12 (км/ч) - скорость на обратном пути
(х + 3) = 12 + 3 = 15 (км/ч) - скорость от дома до станции.
ответ: 15 км/ч.
1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
- + -
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
32 - составное число
20 - составное число
12 - составное число
Разложим число 32 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
32 : 2 = 16 - делится на простое число 2
16 : 2 = 8 - делится на простое число 2
8 : 2 = 4 - делится на простое число 2
4 : 2 = 2 - делится на простое число 2.
Завершаем деление, так как 2 простое число
Разложим число 20 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
20 : 2 = 10 - делится на простое число 2
10 : 2 = 5 - делится на простое число 2.
Завершаем деление, так как 5 простое число
Разложим число 12 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Прежде всего запишем множители самого большого числа, а затем меньших чисел. Найдем недостающие множители, выделим синим цветом в разложении меньших чисел множители, которые не вошли в разложение большего числа.
32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2
20 = 2 ∙ 2 ∙ 5
12 = 2 ∙ 2 ∙ 3
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
НОК (32 ; 20 ; 12) = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 5 ∙ 3 = 480
Пошаговое объяснение: