Для начала вычислим скорость, с которой катер ехал по течению реки.
1) 12 + 3 = 15 (км/ч) - по течению реки.
Далее вычисляем скорость катера против течения реки.
2) 12 - 3 = 9 (км/ч) - против течения реки.
Сейчас можем вычислить расстояние, которое проехал катер по течению за 3 часа.
3) 15 * 3 = 45 (км) - за 3 часа по течению.
Теперь узнаем расстояние, которое проехал катер против течения за 5 часов.
4) 9 * 5 = 45 (км) - за 5 часов против течения.
ответ: по течению реки 15 км/ч, против течения 9 км/ч, за 3 часа по течению 45 км, за 5 часов против течения 45 км.
Пошаговое объяснение:
840 см²
Пошаговое объяснение:
S=h•a
∆ АВD равнобедренный. Высота ВН - его медиана.
АН=DH=21, т.е. мы 42:2=21
Высота по т.Пифагора
ВН=√(АВ²-АН²)=√(29²-21)=20
S=20•42=840 см²
2) Для определения площади параллелограмма можно применить следующие формулы:
а) Умножения высоты и стороны: S=h•a
b) Формулу Герона S=√p(p-a)(p-b)(p-c) для половины параллелограмма и последующего умножения на 2.
c) Формулу умножения сторон и синуса угла между ними: S=a•b•sinα=a•b•sinβ
d) Формула площади параллелограмма через диагонали и угол между ними:
S=0,5•D•d•sinα=0,5•D•d•sinβ
в) х = 3
г) х = -10
Пошаговое объяснение:
в) 5х - 15 = 0
5х = 15
х = 15/5
х = 3
5*3 - 15 = 0 → 15 - 15 = 0
г) 2/5х + 4 = 0
2/5х = -4
х = -4 : 2/5
х = -4 * 5/2
х = -10
2/5 * (-10) + 4 = 0 → -4 + 4 = 0