Рассмотрим событие А - из наугад выбранной урны будет извлечён белый шар. Это может произойти в результате следующих предположений: B₁ - будет выбрана 1-я урна В₂ - будет выбрана 2-я урна В₃ - будет выбрана 3-я урна Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна P(B₁)=P(B₂)=P(B₃)=1/3 Далее. В первой урне 3 белых шара + 1 чёрный = 4 шара. Вероятность извлечения белого шара, если будет выбрана первая урна P₁=3/4 Во второй урне 6 белых + 4 черных = 10 шаров. Вероятность извлечения белого шара, если будет выбрана вторя урна P₂=6/10=3/5 В третьей урне 9 белых + 1 чёрный = 10 шаров. Вероятность извлечения белого шара, если будет выбрана третья урна Р₃=9/10 По формуле полной вероятности Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10= =1/4+1/5+3/10=3/4
Симметричность в условии означает, что вероятность выпадения орла = P(орла) = Р(о) равна вероятности выпадения решки = P(решки) = Р(р). А так как две эти вероятности составляют полную группу событий (считаем, что в результате каждого броска возможен лишь один из этих двух исходов), т.е. P(o) + P(р) = 1, то, используя полученное выше равенство получаем : P(o) + P(0) = 1 => Р(о) = Р(р) = 0.5 или 50 процентов.
Т.к. броски монеты события независимые, то итоговая вероятность есть произведение вероятностей на каждом из них.
Сравните числа; 6,7 и 6,8; 26,39 и 26,279; 0,4 и 0,09; 5,1 и 5,098; 12,4 и 12,42.
Пошаговое объяснение: