Вариант 2 = 0;
Алгебр.
ора
1. Решите уравнение:
8х + 14
1)
x - 7
х
9
х+5
= 0.
х+5
x - 3
х2 – 3х
2. Запишите в стандартном виде число: 1) 563 000; 2) 0,0074.
3. Представьте в виде степени с основанием m выражение: 1) m- • m?; 2) m-1 : m; 3)
(m-s)-3 • m-23
4. Упростите выражение 0,7х-1гутв • 1,1х12y-12.
5. Найдите значение выражения:
19
14-6 . 14-12
1) 2-2 +
2)
6. Преобразуйте выражение (-5/6 •a-b-s)-3 • (6a1sbs)-г так, чтобы оно не содержало
степеней с отрицательными показателями.
81-3 . 27-5
1) (64 . 4-7) 2 . (16-1)-3; 2)
7. Вычислите:
8. Решите графически уравнение 8/x = 9 – х.
9. Порядок числа а равен 4, а порядок числа b равен –3. Каким может быть порядок
значения выражения: 1) ab; 2) а+ 10b ?
(3)",
14-17
9-12
y' = 42x⁵ -2
б) f(x)=x² sinx
f(x)' = (x²)' sinx + x² (sinx)' = 2x sinx + x² cosx
в) f(x)=3x-5
1+4x
f(x)' = (3x-5)' (1+4x) - (3x-5) (1+4x)' = 3(1+4x) - 4(3x-5) =
(1+4x)² (1+4x)²
= 3+12x-12x+20 = 23
(1+4x)² (1+4x)²
г) f(x)=6/x - 6√x +4x¹⁷
f(x)' = -6 - 6 + 68x¹⁶
x² 2√x
д) f(x)=(1+x³)*2√x
f(x)' = (1+x³)' *2√x + (1+x³) *(2√x)' = 6x²√x + 1+x³ =
√x
=6x²√x √x +1+x³ = 6x³+1+x³ = 7x³+1
√x √x √x