1) Соединим точку вершину S и центр О, проведём диагональ ВD ⇒ BO=OD, BO=1/2BD=1/2*30=15, SO=√(SB²-BO²)=√(17²-15²=√64=8 по теореме Пифагора 2) В ΔSBC - SR медиана и высота, BC=AB ⇒SΔSBC=1/2BC*SR=1/2*16*7=56 ⇒ площадь всей боковой поверхности равна 3*56=168 3) т.к. параллельные рёбра равны, то BB₁=AA₁=6 ΔBB₁D₁-прямоугольный ⇒ B₁D₁=√(BD₁-BB₁)=√((√70)²-6²)=√34 ΔB₁A₁D₁-прямоугольный ⇒ A₁B₁=√(B₁D₁-A₁D₁)=√((√34)²-5²)=√9=3 4) по теореме Пифагора находим диагональ квадрата(основания) √(2²+2²)=√8=√(4*2)=2√2, теперь также по Пифагору находим высоту т.к. катет это половина диагонали, то h=√((√11)²-(√2)²)=√9=3
Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
BO=OD, BO=1/2BD=1/2*30=15, SO=√(SB²-BO²)=√(17²-15²=√64=8
по теореме Пифагора
2) В ΔSBC - SR медиана и высота, BC=AB ⇒SΔSBC=1/2BC*SR=1/2*16*7=56 ⇒ площадь всей боковой поверхности равна 3*56=168
3) т.к. параллельные рёбра равны, то BB₁=AA₁=6
ΔBB₁D₁-прямоугольный ⇒ B₁D₁=√(BD₁-BB₁)=√((√70)²-6²)=√34
ΔB₁A₁D₁-прямоугольный ⇒ A₁B₁=√(B₁D₁-A₁D₁)=√((√34)²-5²)=√9=3
4) по теореме Пифагора находим диагональ квадрата(основания)
√(2²+2²)=√8=√(4*2)=2√2, теперь также по Пифагору находим высоту
т.к. катет это половина диагонали, то h=√((√11)²-(√2)²)=√9=3