Доказательства: если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач
Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.