М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Даяна131106
Даяна131106
13.08.2022 10:15 •  Математика

3. Найдите корень уравнения: а) 3x = 28 - x;
в) 5х + 12 = 8х + 30;
д) 33 + 8x = -5х + 72;
б) 6x – 19 =-х – 10;
г) 7 – 2x = 3х - 18;
е) 2x + 9 = 2х — 4.
4. Решите уравнение:
а) -6(х + 2) = 4х – 17;
в) 10x + 3(7 – 2x) = 13 + 2x;
б) (18x — 19) — (4 — 7x) =-
г) -3(4-5y) + 2(3 – 6у) =-
-
5 Найдите корни уравнения:​

👇
Ответ:
Жебир
Жебир
13.08.2022

а) 7.  в) -6  д) 3

Пошаговое объяснение:

3x = 28 -x

4x =28

x =7

в) 5х + 12 = 8х + 30;

12-30 = 8x-5x

-18 = 3x

x = -6

д) 33 + 8x = -5х + 72;

8x+5x = 72-33

13x = 39

x=3

4,4(12 оценок)
Ответ:
rfege91
rfege91
13.08.2022

3.

а) 3x = 28 - x

3х + х = 28

4х = 28

х = 28 : 4

х = 7

в) 5х + 12 = 8х + 30

8х - 5х = 12 - 30

3х = - 18

х = -18 : 3

х = -6

д) 33 + 8x = -5х + 72

8х + 5х = 72 - 33

13х = 39

х = 39 : 13

х = 3

б) 6x – 19 =-х – 10

6х + х = -10 + 19

7х = 9

х = 9 : 7

х = 1 7/9

г) 7 – 2x = 3х - 18

3х + 2х = 7 + 18

5х = 25

х = 25 : 5

х = 5

е) 2x + 9 = 2х — 4

2х - 2х = -4 - 9

0х = -13

Не имеет корней

4.

а) -6(х + 2) = 4х – 17

-6х - 12 = 4х - 17

-6х - 4х = 12 - 17

-10х = -5

х = -5 : (-10)

х = 1/2

в) 10x + 3(7 – 2x) = 13 + 2x

10х + 21 - 6х = 13 + 2х

10х - 6х - 2х = 13 - 21

2х = - 8

х = -8 : 2

х = -4

б) (18x — 19) — (4 — 7x) =-чему равно

г) -3(4-5y) + 2(3 – 6у) =-чему равно

4,4(58 оценок)
Открыть все ответы
Ответ:
copekuti
copekuti
13.08.2022

Введите поисковой запрос

Расширенный поиск

ВОЙТИ / ЗАРЕГИСТРИРОВАТЬСЯЕдиное окно доступа к образовательным ресурсам

ДИСКРЕТНАЯ МАТЕМАТИКА: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО КУРСУ

Автор/создатель: Азарнова Т.В., Булгакова И.Н.

13

Голосов: 12

Данная работа содержит краткое изложение теории множеств, бинарных отношений и комбинаторики, соответствующее курсу лекций по дисциплине "Дискретная математика", читаемому на факультете ПММ. Пособие содержит ряд примеров, демонстрирующих использование изложенной теории для решения конкретных задач. Для закрепления материала в конце параграфов приведены задачи для самостоятельного решения, которые могут быть также использованы для проведения практических занятий.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.

Изображения (картинки, формулы, графики) отсутствуют.

Страницы ← предыдущая следующая →

1 2 3 4 5 6

11

Теория множеств

1) последовательности непустых множеств Χ 1 , Χ 2 ,..., Χ n ,..., такой, что

Χ 1 ⊃ Χ 2 ⊃ ... и Ι Χ n = ∅ ;

n∈Ν

2) последовательности множеств, отличных от универсального множества

Λ , такой, что Χ 1 ⊂ Χ 2 ⊂ ... и Υ Χ n = Λ ;

n∈Ν

3) семейства множеств такого, что пересечение любого конечного числа

множеств из этого семейства непусто, а пересечение всех множеств пусто.

§ 2. Прямое произведение множеств.

Бинарные отношения

Произведением (или декартовым произведением) Χ 1 × Χ 2 двух

непустых множеств Χ 1 и Χ 2 будем называть множество упорядоченных

пар (x1 , x 2 ), где x1 ∈ Χ 1 , x 2 ∈ Χ 2 . Это понятие выросло из понятия

декартовой системы координат. Данное понятие можно обобщить и на

случай n множеств. Если Χ 1 , Χ 2 ,..., Χ n - n непустых множеств, то их

произведение состоит из всевозможных упорядоченных наборов

(x1 , x 2 ,..., x n ) , x k ∈ Χ k , k = 1,..., n элементов этих множеств. Если множества

Χ 1 = Χ 2 = ... = Χ n = Χ , то их произведение Χ 1 , Χ 2 ,..., Χ n обозначается

Χ n . Так, символом R n обозначается множество упорядоченных векторов n

вещественных чисел.

Любое подмножество из произведения Χ ×Υ называется бинарным

отношением. Если Χ =Υ , то бинарное отношение называется бинарным

отношением на множестве Χ . Бинарные отношения обозначаются буквами

φ , ρ , f ,... Если пара (x, y ) принадлежит бинарному отношению ρ , то пишут

(x, y )∈ ρ или x ρ y .

Для задания бинарного отношения ρ используют те же методы, что и

для произвольных множеств, кроме того, бинарное отношение, заданное на

конечном множестве Χ , можно задать в виде графа, а бинарное отношение

на множестве R можно задать в виде декартовой диаграммы. Под графом

бинарного отношения мы понимаем схему, в которой элементы множества

Χ изображаются точками на плоскости, элементы x, y ∈ Χ , такие, что пара

(x, y )∈ ρ соединяются стрелкой, направленной от x к y , пары (x, x )∈ ρ

изображаются петлей вокруг точки x . Под декартовой диаграммой

понимают изображение пар (x, y ) ∈ ρ в декартовой прямоугольной системе

координат.

Областью определения бинарного отношения ρ называется множество

D ρ = {x ∈ Χ : ∃y (x, y )∈ ρ }.

Областью значений бинарного отношения ρ называется множество

R ρ = {y ∈Υ : ∃x (x, y )∈ ρ }.

12

Теория множеств

Бинарное отношение ρ на множестве Χ называется рефлексивным,

если для любого x ∈ Χ пара (x, x ) ∈ ρ . Если Χ - конечное множество, то

рефлексивность бинарного отношения ρ означает, что на графе данного

бинарного отношения вокруг каждой точки x из Χ есть петля. Если Χ = R ,

то рефлексивность бинарного отношения ρ с точки зрения декартовой

диаграммы означает, что в число изображенных точек войдут все точки

прямой y ( x) = x .

Бинарное отношение ρ на (4,2 ), .

(2,3), (2,4), (2,5) (5,1), (5,2) 

 

4,7(4 оценок)
Ответ:
gaytad1
gaytad1
13.08.2022

Вися́чие сады́ Семирами́ды — одно из Семи чудес античного мира, которое представляло собой инженерное сооружение в Вавилоне с каскадом многоуровневых садов, где росли многочисленные породы деревьев, кустарников и виноградных лоз, производившее впечатление большой зелёной горы. Единственное из Семи чудес, местонахождение которого окончательно не установлено[1] и, более того, подвергается сомнению сам факт его существования[⇨], поскольку не сохранилось никаких вавилонских текстов, в которых упоминаются эти сады, описания садов имеются лишь у поздних древнегреческих и римских авторов[⇨], а археологические раскопки в районе предполагаемого местонахождения садов также не дали результато

Пошаговое объяснение:

4,6(57 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ