3.
а) 3x = 28 - x
3х + х = 28
4х = 28
х = 28 : 4
х = 7
в) 5х + 12 = 8х + 30
8х - 5х = 12 - 30
3х = - 18
х = -18 : 3
х = -6
д) 33 + 8x = -5х + 72
8х + 5х = 72 - 33
13х = 39
х = 39 : 13
х = 3
б) 6x – 19 =-х – 10
6х + х = -10 + 19
7х = 9
х = 9 : 7
х = 1 7/9
г) 7 – 2x = 3х - 18
3х + 2х = 7 + 18
5х = 25
х = 25 : 5
х = 5
е) 2x + 9 = 2х — 4
2х - 2х = -4 - 9
0х = -13
Не имеет корней
4.
а) -6(х + 2) = 4х – 17
-6х - 12 = 4х - 17
-6х - 4х = 12 - 17
-10х = -5
х = -5 : (-10)
х = 1/2
в) 10x + 3(7 – 2x) = 13 + 2x
10х + 21 - 6х = 13 + 2х
10х - 6х - 2х = 13 - 21
2х = - 8
х = -8 : 2
х = -4
б) (18x — 19) — (4 — 7x) =-чему равно
г) -3(4-5y) + 2(3 – 6у) =-чему равно
Введите поисковой запрос
Расширенный поиск
ВОЙТИ / ЗАРЕГИСТРИРОВАТЬСЯЕдиное окно доступа к образовательным ресурсам
ДИСКРЕТНАЯ МАТЕМАТИКА: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО КУРСУ
Автор/создатель: Азарнова Т.В., Булгакова И.Н.
13
Голосов: 12
Данная работа содержит краткое изложение теории множеств, бинарных отношений и комбинаторики, соответствующее курсу лекций по дисциплине "Дискретная математика", читаемому на факультете ПММ. Пособие содержит ряд примеров, демонстрирующих использование изложенной теории для решения конкретных задач. Для закрепления материала в конце параграфов приведены задачи для самостоятельного решения, которые могут быть также использованы для проведения практических занятий.
Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.
Страницы ← предыдущая следующая →
1 2 3 4 5 6
11
Теория множеств
1) последовательности непустых множеств Χ 1 , Χ 2 ,..., Χ n ,..., такой, что
Χ 1 ⊃ Χ 2 ⊃ ... и Ι Χ n = ∅ ;
n∈Ν
2) последовательности множеств, отличных от универсального множества
Λ , такой, что Χ 1 ⊂ Χ 2 ⊂ ... и Υ Χ n = Λ ;
n∈Ν
3) семейства множеств такого, что пересечение любого конечного числа
множеств из этого семейства непусто, а пересечение всех множеств пусто.
§ 2. Прямое произведение множеств.
Бинарные отношения
Произведением (или декартовым произведением) Χ 1 × Χ 2 двух
непустых множеств Χ 1 и Χ 2 будем называть множество упорядоченных
пар (x1 , x 2 ), где x1 ∈ Χ 1 , x 2 ∈ Χ 2 . Это понятие выросло из понятия
декартовой системы координат. Данное понятие можно обобщить и на
случай n множеств. Если Χ 1 , Χ 2 ,..., Χ n - n непустых множеств, то их
произведение состоит из всевозможных упорядоченных наборов
(x1 , x 2 ,..., x n ) , x k ∈ Χ k , k = 1,..., n элементов этих множеств. Если множества
Χ 1 = Χ 2 = ... = Χ n = Χ , то их произведение Χ 1 , Χ 2 ,..., Χ n обозначается
Χ n . Так, символом R n обозначается множество упорядоченных векторов n
вещественных чисел.
Любое подмножество из произведения Χ ×Υ называется бинарным
отношением. Если Χ =Υ , то бинарное отношение называется бинарным
отношением на множестве Χ . Бинарные отношения обозначаются буквами
φ , ρ , f ,... Если пара (x, y ) принадлежит бинарному отношению ρ , то пишут
(x, y )∈ ρ или x ρ y .
Для задания бинарного отношения ρ используют те же методы, что и
для произвольных множеств, кроме того, бинарное отношение, заданное на
конечном множестве Χ , можно задать в виде графа, а бинарное отношение
на множестве R можно задать в виде декартовой диаграммы. Под графом
бинарного отношения мы понимаем схему, в которой элементы множества
Χ изображаются точками на плоскости, элементы x, y ∈ Χ , такие, что пара
(x, y )∈ ρ соединяются стрелкой, направленной от x к y , пары (x, x )∈ ρ
изображаются петлей вокруг точки x . Под декартовой диаграммой
понимают изображение пар (x, y ) ∈ ρ в декартовой прямоугольной системе
координат.
Областью определения бинарного отношения ρ называется множество
D ρ = {x ∈ Χ : ∃y (x, y )∈ ρ }.
Областью значений бинарного отношения ρ называется множество
R ρ = {y ∈Υ : ∃x (x, y )∈ ρ }.
12
Теория множеств
Бинарное отношение ρ на множестве Χ называется рефлексивным,
если для любого x ∈ Χ пара (x, x ) ∈ ρ . Если Χ - конечное множество, то
рефлексивность бинарного отношения ρ означает, что на графе данного
бинарного отношения вокруг каждой точки x из Χ есть петля. Если Χ = R ,
то рефлексивность бинарного отношения ρ с точки зрения декартовой
диаграммы означает, что в число изображенных точек войдут все точки
прямой y ( x) = x .
Бинарное отношение ρ на (4,2 ), .
(2,3), (2,4), (2,5) (5,1), (5,2)
Вися́чие сады́ Семирами́ды — одно из Семи чудес античного мира, которое представляло собой инженерное сооружение в Вавилоне с каскадом многоуровневых садов, где росли многочисленные породы деревьев, кустарников и виноградных лоз, производившее впечатление большой зелёной горы. Единственное из Семи чудес, местонахождение которого окончательно не установлено[1] и, более того, подвергается сомнению сам факт его существования[⇨], поскольку не сохранилось никаких вавилонских текстов, в которых упоминаются эти сады, описания садов имеются лишь у поздних древнегреческих и римских авторов[⇨], а археологические раскопки в районе предполагаемого местонахождения садов также не дали результато
Пошаговое объяснение:
а) 7. в) -6 д) 3
Пошаговое объяснение:
3x = 28 -x
4x =28
x =7
в) 5х + 12 = 8х + 30;
12-30 = 8x-5x
-18 = 3x
x = -6
д) 33 + 8x = -5х + 72;
8x+5x = 72-33
13x = 39
x=3