Опустим из центра окружности О на хорду АВ высоту OH (она равна 12). По свойству радиуса, перпендикулярного к хорде получаем, что OH делит АВ пополам на отрезки АО=ОВ=5 см. Треугольник АНО - прямоугольный. В нём по Теореме Пифагора находим, что: АО=13 Мы нашли радиус окружности. Он равен 13. Опустим теперь из центра окружности О на хорду CD высоту ОК (она равна 5) По свойству радиуса, перпендикулярного к хорде получаем, что OK делит CD пополам. Треугольник CKО - прямоугольный. В нём по Теореме Пифагора находим, что: CK=12 тогда длина хорды CD=2*CK=2*12=24 ответ: 24
Чтобы сравнить с числом сумму или разность, её неплохо было бы сначала посчитать. Сравнить же можно, вычитая одно число из другого. Если разность дольше нуля, то уменьшаемое больше вычитаемого, если разность меньше нуля - уменьшаемое меньше вычитаемого. Итак: 1) 5237+786=6023 6023>6000 (6023-6000=23, 23>0) 2) 1560-760=800 800=800 3) 384*200=76800 Если там действительно 7800, то 76800>7800 (76800-7800=69000 69000>0) Если всё же 78000, что выглядит несколько правдоподобнее, то 76800<78000 (76800-78000=-12000, -12000<0) 4) 3000:6=500 460<500 (460-500=-40, -40<0)
По свойству радиуса, перпендикулярного к хорде получаем, что OH делит АВ пополам на отрезки АО=ОВ=5 см.
Треугольник АНО - прямоугольный. В нём по Теореме Пифагора находим, что:
АО=13
Мы нашли радиус окружности. Он равен 13.
Опустим теперь из центра окружности О на хорду CD высоту ОК (она равна 5)
По свойству радиуса, перпендикулярного к хорде получаем, что OK делит CD пополам.
Треугольник CKО - прямоугольный. В нём по Теореме Пифагора находим, что:
CK=12
тогда длина хорды CD=2*CK=2*12=24
ответ: 24