Пусть на 1-ом кусте растёт х (ягод). тогда на 2-ом кусте растёт (х + 1) ягод здесь имеет место арифметическая прогрессия, где х - это ягоды на первом кусте, разность арифметической прогрессии (d) = 1 количество кустов = 8 найдём суммарное количество ягод (s8), приравняв его к 225: s8 = (2x + d(8-1) /2)) * 8 = ((2x + 1 *7)/2) * 8 = (2x+7) *4 = 225 (2x + 7)*4 = 225 8x + 28 = 225 8x = 225 - 28 8x = 197 x = 197 : 8 x = 24,625 количество ягод на первом кусте - число дробное, поэтому дробное число ягод на кусте расти не может, ⇒ общее число ягод не может быть равно 225. ответ: не может расти 225 ягод на всех кустах вместе.
Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!