Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура — это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура — это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
Пошаговое объяснение:
ответ:12
Пошаговое объяснение:
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура - это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура - это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
3. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Найдем, какую часть круга составляет незакрашенный сектор. Если мы незакрашенный центральный угол повернем на угол alpha, то увидим, что его величина равна 90^{circ}:
Сектор 90^{circ} - это 1/4 часть круга. Следовательно, закрашенный сектор - это 3/4 круга. И его площадь равна S={3/4}*16{pi}=12{pi}
В ответе записываем S/{pi}.
ответ: 12
а) -2/9+(-5/9)= 2+5/9=7/9;
-2/9+5/9= -2+5/9=-7/9
2/9+(-5/9)=-2+5/9=-7/9
г)-1/3+3/4= -1/4
-1/3+(-3/4)=1/4
1/3+(-3/4)=-1/4
N° 1070
(2/5+(-0,5))+(-1 1/4)=(2/5+(-5/10))+(-5/4)=1/5+5/4=1/4
(0,6+2/3)+(-2 1/15)=-(6/10+2/3+31/15)=-62/75