Расчет для 1993 года - 456-128 = 328, делим на М и Д Д93 = 164, М93 = 164+128=292. Для последующих годов пишем формулы Д(93+n) = Д93+6n = 164+6n М(93+n) =М93-2n = 292-2n 1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года. Подставим в формулу В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ 1b) М(93-2n) = Д(93+6n) - поровну М и Д. 164+6n = 292-2n 8n=292-164 =128, n=16 N=1993+16= 2009 год. - ОТВЕТ 1с) Сколько Всего, когда Д=М-40 ? 164+6n +40 =292-2n 8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады. В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500) 1d) N - Д = 2*М 164 +6n = 2*(292-2n) = 584-4n 10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ (М=208 Д=416 В=624) 1е) В среднем 550 чел. N=? 550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47 n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552) Проверено.
В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
8/9 * 2= 16/18
56/72 : 8= 7/9
Пошаговое объяснение: