Y'=3x^2 -14x -5. Приравняем производную к нулю и решим квадратное уравнение, чтобы найти критические точки:Y'=0 3x^2-14x -5=0. Находим дискриминант D= (-14)^2-4*3*(-5)=196+60=256>0. значит, уравнение имеет две критические точки .Корень квадратный VD= +-16. х=(14+-16)/6. х=-1/3 и х=5. Наносим эти точки на числовую прямую и находим знак прозводной на каждом интервале, на которые точки разбили числовую прямую. на интервале от минус бесконечности до -1/3 У'(-1)=6>0 Следовательно на этом интервале функция возрастает. на интервале (-1/3,5) У'=-16. значит, функция убывает на этом интервале. И, наконец, на интервале (5,до + бесконечности) Y'= 127. Функция вновь возрастает. Если при переходе через критическую точку функция меняет знак с + на - , то в этой точке мах, если с - на+ то min. Итак, в точке х=-1|3,у(-1/3)=max, в точкех=5 функция имеет минимум.
Раз значение выражения должно быть целым числом, то это это значит, что 2n + 12 должно делиться нацело на 2n. 2n + 12 и 2n делятся на 2n. Это значит, что и их разность будет по-прежнему делиться на 2n, то есть (2n + 12) - 2n = 12 делится нацело на 2n. Теперь дело осталось за малым. Очевидно, что 2n - делитель числа 12. Переберём все делители числа 12: 1; -1; 2;-2;3;-3;4;-4;6;-6;12;-12. Сразу можем убрать все отрицательные делители - n по условию натурально. И решим ряд уравнений, откуда найдём n: 2n = 2, n = 1 2n = 3, n = 1.5 - не подходит, так как n натурально. 2n = 4, n = 2 2n = 6, n = 3 2n = 12, n = 6 Итак, при n = 1;2;3;6 выполняется наше условие. Задача решена.