ответ:
пошаговое объяснение:
x^2+3x+2< =0
(x+1)(x+2)< =0
x € [-2; -1]
нам надо, чтобы этот отрезок попал целиком внутрь промежутка - решения 2 неравенства.
x^2 + 2(2a+1)x + (4a^2-3) < 0
d/4 = (2a+1)^2 - (4a^2-3) = 4a^2+4a+1-4a^2+3 = 4a+4
если это неравенство имеет два корня, то d/4 > 0
a > -1
x1 = -2a-1-√(4a+4) < -2
x2 = -2a-1+√(4a+4) > -1
тогда решение 1 неравенства [-2; -1] целиком находится внутри решения 2 неравенства [x1; x2].
{ -√(4a+4) = -2√(a+1) < = 2a-1
{ √(4a+4) = 2√(a+1) > = 2a
из 1 неравенства
2√(a+1) > = 1-2a
4(a+1) > = 1-4a+4a^2
4a^2-8a-3 < = 0
d/4 = 4^2+4*3=16+12=28=(2√7)^2
a1=(4-2√7)/4=1-√7/2 ~ -0,323
a2=(4+2√7)/4=1+√7/2 ~ 2,323
a € [1-√7/2; 1+√7/2]
из 2 неравенства
а+1 > = a^2
a^2-a-1 < = 0
d=1+4=5
a1 = (1-√5)/2 ~ -0,618
a2 = (1+√5)/2 ~ 1,618
a € [(1-√5)/2; (1+√5)/2]
ответ: a € [1-√7/2; (1+√5)/2]
Пошаговое объяснение:
1) -2x +4 ≥ 0 2) 3x - 6 > 0 3) -2x - 6 ≤ 0 4) -3x +9 < 0
-2x ≥ - 4 3x > 6 - 2x ≤ 6 - 3x < -9
x ≤ 2 x > 2 x ≥ -3 x > 3
5) 3x + 1 ≥ 2x - 3 6) - 4x + 3 < - 2x - 1 7) 2x + 3 > - x +6
3x - 2x ≥ -3 - 1 -4x + 2x < - 1 - 3 3x > 3
x ≥ -4 - 2x < - 4 x > 1
x > 2
8) 3x+1 ≤ x-5 9) 2(x-1) < 2x-4 10) 3(х-2) ≥ 3х - 3
2x ≤ -6 2x - 2x < 2-4 3х - 6 ≥ 3х -3
x ≤ -3 2< 0 - решения нет -3 ≥ 0 - решения нет
11) -2(х+1) ≤ -2(х+1)
-2х -2 ≤ 2х - 2
0 ≤ 0
х ϵ R - все множество действительных чисел
12) 3 (1-х) ≤ 6-3х
3-3х ≤ 6-3х
3 ≤ 6
-3 ≤ 0
х ϵ R - все множество действительных чисел