ответ: 9 см; 5,4 см; 9,6 см; 7,2 см; 12,8 см
Пошаговое объяснение:
на фото рисунок и дано
Прежде всего мы можем узнать ВД из ΔАВД
Это египетский треугольник, т.к. угол ВАД=90° и катеты соотносятся как 3:4 (12:16=3:4)
k=12/3=4
Поэтому гипотенуза ВД=5k=5*4=20 см
У трегольников ΔАВО и ΔАДО общая сторона--АО. Причем оба прямоугольные, поэтому по теореме Пифагора выводим катет АО из обоих треугольников.
из ΔАВО АО²=АВ²-ОВ²
из ΔАДО АО²=АД²-ОД²
АВ²-ОВ²=АД²-ОД²
И для удобства обозначим ОВ=х, ОД=20-х
12²-х²=16²-(20-х)²
144-х²=256-400+40х-х²
144=256-400+40х
40х=144+400-256
40х=288
х=7,2 см
ОВ=7,2 см
ОД=20-х=20-7,2=12,8 см
Теперь подставляем результат в формулу
АО²=АВ²-ОВ²
АО²=144-(7,2)²=92,16
АО=9,6 см
Т.к. ВС параллельна АД, то ВД--сечная, поэтому их внутренние разносторонние углы СВД и ВДА равны. Также известно, что ВОС=АОД (как вертикальные), из этого делаем вывод, что треугольники ΔДОА ~ΔВОС подобны
Поэтому ВС/АД=ВО/ОД
ВС=АД*ВО/ОД=16*7,2/12,8= 9 см
И, наконец, ОС/АО=ВС/АД
ОС=ОА*ВС/АД=5,4 см
Фотку с обозначеными сторонами тоже оставила
№3
а) 6; 7/15; 5,22; 149; 11 7/11; 72,33; 666; 5,55.
б) 6; -26; 0; 149; -777; -909; 666; -1012.
в) 6; 7/15; 5,22; 149; 11 7/11; 72,33; 666; 5,55.
г) -9,1; -26;-777; -909; -1012; -0,73.
д) -26; -777; -909; -1012.
e) 7/15; 5,22; 11 7/11; 72,33; 5,55.
№4
1)ответ: 3,5
2)ответ: 22,1
3)ответ: 8
Можно 5 звезд?)