(x^3-x^2+x)/(x+8)<0 Найдем нули числителя: x^3-x^2+x=x(x^2-x+1). Найдем нули выражения в скобках: x^2-x+1=0, D=(-1)^2-4*1*1=-3 - действительных корней нет. Это значит, что выражение (x^2-x+1) на знак левой части неравенства не повлияет, и можно смело на него разделить всю дробь. То есть будет x/(x+8)<0. Нули числителя: x=0, Нули знаменателя: x=-8. Решением неравенства будет интервал x∈(-8;0), поскольку при x < -8 левая часть неравенства больше 0; при x=-8 значение x/(x+8) не определено; при x >= 0 x/(x+8) >=0
Автор вопроса задал этот вопрос неправильно. Правильная формулировка такая: К правильной шестиугольной призме с ребром ОСНОВАНИЯ, равным 1 приклеили правильную шестиугольную пирамиду с ребром ОСНОВАНИЯ, равным 1 так, что грани оснований совпали. Сколько рёбер у получившегося многогранника? РЕШЕНИЕ. У шестиугольной призмы 18 рёбер (по 6 в каждом из двух оснований и 6 боковых). У шестиугольной пирамиды 12 рёбер (6 в основании и 6 боковых). После того, как призму и пирамиду склеили, ребра одного из оснований призмы, и рёбра основания пирамиды стали общие, т.е, число рёбер стало 18+12-6=24.
где задание