Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
(25x^3)^2*(5x^5)^3/(125 x^8)^2=-160
х не равен 0.
((5²х³)² * (5х⁵)³) / (5³х⁸)² = -160
(5⁴х⁶ * 5³х¹⁵) / (5⁶х¹⁶) = -160
(5⁷х²¹) / (5⁶х¹⁶) = -160
5х⁵ = -160
х⁵ = - 32
х = - ⁵√32 = -2
Пошаговое объяснение: