В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
2) 1 : 9 = 1/9 дет./мин - производительность работы первого ученика.
3) 1 : 12 = 1/12 дет./мин - производительность работы второго ученика.
4) 1/6 + 1/9 + 1/12 = 6/36 + 4/36 + 3/36 = 13/36 дет./мин - производительность всех троих при совместной работе.
5) 390 : 13/36 = 390•36/13 = 30•36= 1080 минут работали они вместе.
6) 1080 • 1/6 = 1080/6 = 180 деталей за время совместной работы изготовил мастер.
7) 1080 • 1/9 = 1080/9 = 120 деталей за время совместной работы изготовил первый ученик.
8) 1080 • 1/12 = 1080/12 = 90 деталей за время совместной работы изготовил второй ученик.
ответ: 180 деталей, 120 деталей, 90 деталей.
Проверка:
180+120+90 = 390 деталей было совместными усилиями изготовлено всего.