по клеткам нарисован прямоугольник, у которого число клеток идущих по периметру равно числу внутренних клеток например прямоугольник 8 на 6. найдите все такие прямоугольники
Вася и Петя учатся в школе в одном классе. Недавно Петя поведал Васе о хитром возведения в квадрат натуральных чисел, оканчивающихся на цифру 5. Теперь Вася может с легкостью возводить в квадрат двузначные (и даже некоторые трехзначные) числа, оканчивающиеся на заключается в следующем: для возведения в квадрат числа, оканчивающегося на 5 достаточно умножить число, полученное из исходного вычеркиванием последней пятерки на следующее по порядку число, затем остается лишь приписать «25» к получившемуся результату справа. Например, для того, чтобы возвести число 125 в квадрат достаточно 12 умножить на 13 и приписать 25, т.е. приписывая к числу 12*13=156 число 25, получаем результат 15625, т.е. 1252=15625. Напишите программу, возводящую число, оканчивающееся на 5, в квадрат для того, чтобы Вася смог проверить свои навыки.
Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
Вася и Петя учатся в школе в одном классе. Недавно Петя поведал Васе о хитром возведения в квадрат натуральных чисел, оканчивающихся на цифру 5. Теперь Вася может с легкостью возводить в квадрат двузначные (и даже некоторые трехзначные) числа, оканчивающиеся на заключается в следующем: для возведения в квадрат числа, оканчивающегося на 5 достаточно умножить число, полученное из исходного вычеркиванием последней пятерки на следующее по порядку число, затем остается лишь приписать «25» к получившемуся результату справа. Например, для того, чтобы возвести число 125 в квадрат достаточно 12 умножить на 13 и приписать 25, т.е. приписывая к числу 12*13=156 число 25, получаем результат 15625, т.е. 1252=15625. Напишите программу, возводящую число, оканчивающееся на 5, в квадрат для того, чтобы Вася смог проверить свои навыки.