Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
Для вычисления корней (x - 1)2 = 2x2 - 6x - 31 уравнения мы начинаем с того что выполним открытие скобок в левой части.
Для этого вспомним формулу:
(n - m)2 = n2 - 2nm + m2;
Итак, применим формулу и получим:
x2 - 2x + 1 = 2x2 - 6x - 31;
Соберем все слагаемые в левой части и приведем подобные:
x2 - 2x2 - 2x + 6x + 1 + 31 = 0;
-x2 + 4x + 32 = 0;
x2 - 4x - 32 = 0;
Решаем через дискриминант корни уравнения:
D = 16 - 4 * 1 * (-32) = 16 + 128 = 144;
x1 = (4 + √144)/2 * 1 = (4 + 12)/2 = 16/2 = 8;
x2 = (4 - √144)/2 * 1 = (4 - 12)/2 = -8/2 = -4.
Пошаговое объяснение: