М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
WallyMF
WallyMF
17.08.2020 07:39 •  Математика

Цікаві факти про піфагора​

👇
Ответ:
tda512
tda512
17.08.2020

Є таке поняття, як Піфагорові штаны на всі сторони рівні. Також він любив математику

4,5(60 оценок)
Открыть все ответы
Ответ:
marilika3
marilika3
17.08.2020

Для дифференциального уравнения n-го порядка

уn = f(x, у, у',…, у(n-1)) (10.1)

 

задача Коши заключается в отыскании решения у = у(х) уравнения (10.1), удовлетворяющего начальным условиям

 

у(х0) = у0, у'(х0)= у'0, …, у(n-1)(х0)= у0(n-1),(10.2)

 

где х0,у0, у'0, у0(n-1) – заданные числа. Если функция f (x,y,y',..., y(n-1)) непрерывна, а ее частные производные  ограничены в области, содержащей точку (х0,у0, у'0, у0(n-1)), то существует единственное решение задачи Коши (10.1), (10.2).

Задача Коши для нормальной системы дифференциальных уравнений

(10.3)

заключается в отыскании решения y1= y1(x),…уn = уn(x)системы (10.3), удовлетворяющего начальным условиям

y1(x0)= у10, у2(x0)= у20, …, уn(x0)= уn0 , (10.4)

где х0, у10, у20, … уn0– заданные числа. Если функции f(x, у1,…, уn),  непрерывны и имеют ограниченные частные производные   в некоторой области, содержащей точку (х0, у10, у20, … уn0), то существует единственное решение задачи Коши (10.3), (10.4).

Известно, что систему дифференциальных уравнений, содержащую производные высших порядков и разрешенную относительно старших производных искомых функций, можно привести к системе вида (10.3) путем введения новых неизвестных функций. В частности, дифференциальное уравнение (10.1) порядка n приводится к системе вида (10.3) с замены

у1 = у', у2 = у" , …, у n-1= y (n-1),

что дает следующую систему

(10.5)

то есть систему n дифференциальных уравнений первого порядка, правая часть которых не зависит от производных искомых функций. Поэтому численные методы решения дифференциальных уравнений традиционно изучают для уравнений первого порядка

а затем, как правило, без труда распространяют на нормальные системы дифференциальных уравнений вида (10.3). Так мы и поступим.

Итак, дано дифференциальное уравнение первого порядка, разрешенное относительно производной

y' = f(x,у),(10.6)

и начальное условие

у (х0) = у0 (10.7)

 

Требуется численно решить задачу Коши (10.6), (10.7) на отрезке [x0, b]. Это решение будет состоять в построении таблицы приближенных значений у1, у2,…, уn искомого решения у = у(х)в точках х1, х2, …, хn = b, где yi ≈ y (xi),

. Для этого отрезок [x0, b] делят на n равных частей длины  , так что xi = х0+ih,  . Величина h называется шагом интегрирования.

Пошаговое объяснение:

4,6(91 оценок)
Ответ:
denis200518
denis200518
17.08.2020

Вова продал Пете калькулятор за( 4 эуро примем 100%):

4 эуро * (100%+15%)= 4*1.15= 4.6 эуро - это та цена , по которой Петя купил

Через пару дней Петя продал обратно по цене ( теперь примем за 100% цену по которой Петя купил)

4.6 эуро * (100%-15%)=4.6*0.85= 3.91 эуро.

Вова продал 4.6 и купил за 3.91

4.6-3.91=0.69 эуро получил выгоды Вова  

Петя продал за 3.91 а перед этим купил за 4.6

3.91-4.6 = - 0.69 эуро выгоды

0.69 эуро переместились из кармана Пети в карман Вовы. + Вова еще выгоду получил когда 1 раз продавал 4.6-4 =0.6 эуро

4,6(15 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ