М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
laykutina
laykutina
29.12.2022 04:33 •  Математика

Ширина прямоугольника составляет половину его длины вычисли периметр если длина прямоугольника равно 1)14 см 2)8 см 2 мм 3)20 м

👇
Ответ:
vitaliy000007
vitaliy000007
29.12.2022

1) 14:2=7 см ширина

(14+7)*2=42 см периметр

2)82мм:2=41 мм ширина

(82+41)*2=246 мм периметр

3)20:2=10м ширина

(20+10)*2=60 м пеиметр

 

4,7(100 оценок)
Ответ:
Mashannjjj
Mashannjjj
29.12.2022

Задача.

а=14 см.

b=1\2 от 14

1)14/2=7(см)-Ширина

P-?см.

P-a+b+a+b P-14+7+14+7=42(cм)

a=8 см. 2 мм=82 мм

b=1/2 от 82 мм.

1)82/2=41(мм)-ширина

P-?см

P-a+b+a+b

P-82+41+82+41=246(см)

a=20м

b=1|2 от 20 м

1)20/2=10(м)-ширина
P-?см

P-a+b+a+b

P-20+10+20+10=60(м)

4,7(56 оценок)
Открыть все ответы
Ответ:
1) 3xi-4+5y=9i+2x+3yi
Соберём мнимые и вещественные части вместе:
(5y-4) + 3xi = 2x + (3y+9)i
Мнимые и вещественные части д.б. равны, отсюда получаем систему уравнений, которую решаем:

\left \{ {{5y-4=2x} \atop {3x=3y+9}} \right. \\ \\ x = y + 3 \\ \\ 5y - 4 = 2(y + 3) \\ 5y - 4 = 2y + 6 \\ 3y = 10 \\ \\ y= \frac{10}{3}; \:\:\:\:\: x = \frac{10}{3} + 3 = \frac{19}{3}

2) \frac{2i^5}{1+i^{17}}
Возведём мнимую единицу в соответствующую степень, учитывая, что:
i^2 = -1; \:\:\:\:\:\: i^4 = 1

\frac{2i^5}{1+i^{17}} = \frac{2i*i^4}{1+i*i^{16}} = \frac{2i}{1+i}

Деление мнимых чисел производится умножением числителя и знаменателя на выражение сопряжённое со знаменателем.

\frac{2i}{1+i} = \frac{2i}{1+i} * \frac{1-i}{1-i} = \frac{2i - 2i*i}{1-i^2} = \frac{2i+2}{1+1} = i + 1

Вещественная часть комплексного числа равна a = 1, мнимая часть тоже равна b = 1.
Найдём модуль комплексного числа |z|:

|z| = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}

Найдём аргумент комплексного числа, используя формулу:
arg(z) = \phi = arctg \frac{b}{a}
При этом надо учитывать следующие случаи:
1. если a>0, то \phi = arctg \frac{b}{a}
2. если a<0 и b>0, то \phi = \pi + arctg \frac{b}{a}
3. если a<0 и b<0, то \phi = - \pi +arctg \frac{b}{a}

У нас первый случай:
\phi = arctg \frac{b}{a} = arctg \frac{1}{1} = arctg 1 = \frac{ \pi }{4}

Отсюда, тригонометрическая форма будет такая:

z = |z|* (cos \phi + isin \phi) = \sqrt{2} (cos \frac{ \pi }{4} + isin \frac{ \pi }{4} )

3) \frac{(1-i)^5}{(1+i)^3}
Делаем аналогично.

\frac{(1-i)^5}{(1+i)^3} = \frac{1-5i+10i^2-10i^3+5i^4-i^5}{1+3i+3i^2+i^3} = \\ \\ = \frac{1-5i-10+10i+5-i}{1+3i-3-i} = \frac{-4+4i}{-2+2i} = \frac{-4(1-i)}{-2(1-i)} = 2 \\ \\ a = 2; \:\:\:\:\:\: b = 0 \\ \\ |z| = \sqrt{2^2+0^2} = 2 \\ \\ \phi = arctg \frac{0}{2} = 0 \\ \\ z = 2(cos0 + isin0)
4,8(75 оценок)
Ответ:
ruslapanazavr
ruslapanazavr
29.12.2022
1) 3xi-4+5y=9i+2x+3yi
Соберём мнимые и вещественные части вместе:
(5y-4) + 3xi = 2x + (3y+9)i
Мнимые и вещественные части д.б. равны, отсюда получаем систему уравнений, которую решаем:

\left \{ {{5y-4=2x} \atop {3x=3y+9}} \right. \\ \\ x = y + 3 \\ \\ 5y - 4 = 2(y + 3) \\ 5y - 4 = 2y + 6 \\ 3y = 10 \\ \\ y= \frac{10}{3}; \:\:\:\:\: x = \frac{10}{3} + 3 = \frac{19}{3}

2) \frac{2i^5}{1+i^{17}}
Возведём мнимую единицу в соответствующую степень, учитывая, что:
i^2 = -1; \:\:\:\:\:\: i^4 = 1

\frac{2i^5}{1+i^{17}} = \frac{2i*i^4}{1+i*i^{16}} = \frac{2i}{1+i}

Деление мнимых чисел производится умножением числителя и знаменателя на выражение сопряжённое со знаменателем.

\frac{2i}{1+i} = \frac{2i}{1+i} * \frac{1-i}{1-i} = \frac{2i - 2i*i}{1-i^2} = \frac{2i+2}{1+1} = i + 1

Вещественная часть комплексного числа равна a = 1, мнимая часть тоже равна b = 1.
Найдём модуль комплексного числа |z|:

|z| = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}

Найдём аргумент комплексного числа, используя формулу:
arg(z) = \phi = arctg \frac{b}{a}
При этом надо учитывать следующие случаи:
1. если a>0, то \phi = arctg \frac{b}{a}
2. если a<0 и b>0, то \phi = \pi + arctg \frac{b}{a}
3. если a<0 и b<0, то \phi = - \pi +arctg \frac{b}{a}

У нас первый случай:
\phi = arctg \frac{b}{a} = arctg \frac{1}{1} = arctg 1 = \frac{ \pi }{4}

Отсюда, тригонометрическая форма будет такая:

z = |z|* (cos \phi + isin \phi) = \sqrt{2} (cos \frac{ \pi }{4} + isin \frac{ \pi }{4} )

3) \frac{(1-i)^5}{(1+i)^3}
Делаем аналогично.

\frac{(1-i)^5}{(1+i)^3} = \frac{1-5i+10i^2-10i^3+5i^4-i^5}{1+3i+3i^2+i^3} = \\ \\ = \frac{1-5i-10+10i+5-i}{1+3i-3-i} = \frac{-4+4i}{-2+2i} = \frac{-4(1-i)}{-2(1-i)} = 2 \\ \\ a = 2; \:\:\:\:\:\: b = 0 \\ \\ |z| = \sqrt{2^2+0^2} = 2 \\ \\ \phi = arctg \frac{0}{2} = 0 \\ \\ z = 2(cos0 + isin0)
4,8(32 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ