Да
Пошаговое объяснение:
Рассмотрим произвольное семизначное число составленное из трёх различных чётных цифр A, B, C.
Так как данное число семизначное, то одна из трёх цифр A, B и C встречается в записи этого числа не менее чем три раза. Пусть для определённости это будет цифра A. Стерев остальные четыре цифры Петя может получить трёхзначное число AAA.
AAA=A·37·3
Значит число AAA делится на 37.
A-чётная цифра. Значит число AAA делится на 2
А так как НОД(2, 37)=1, то число AAA делится на произведение чисел 2 и 37 равное 74
120 * 86 60*86 12*86
= =
-12 * (- 8целых6/10) = -12 * (- 86/10) = 10 5 1
= 12*86 = 1032
1032 94 10320 -94
- = =
1032 - 9.4 = 1032 - 9целых4/10 = 1 10 10
= 10226/10 = 5113/5