вот
Пошаговое объяснение: y'' + 10y' + 24y = 6e^(-6x) + 168x + 118
Неоднородное уравнение 2 порядка.
y(x) = y0 + y* (решение однородного + частное решение неоднородного).
Решаем однородное уравнение
y'' + 10y' + 24y = 0
Характеристическое уравнение
k^2 + 10k + 24 = 0
(k + 4)(k + 6) = 0
y0 = C1*e^(-4x) + C2*e^(-6x)
Находим частное решение неоднородного уравнения
-6 - один из корней характеристического уравнения, поэтому
y* = A*x*e^(-6x) + B1*x + B2
y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1
y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)
Подставляем в уравнение
-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118
(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =
= 6e^(-6x) + 168x + 118
Приводим подобные в скобке при e^(-6x)
-12A + 10A + 60A*x - 60A*x = -2A
Подставляем
-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118
Коэффициенты при одинаковых множителях должны быть равны
{ -2A = 6
{ 24B1 = 168
{ 10B1 + 24B2 = 118
Решаем
{ A = -3
{ B1 = 7
{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2
y* = -3x*e^(-6x) + 7x + 2
ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2
Масса сплава --- 2ц4/5кг;
Медь (Cu) ?кг, 5 частей;
Цинк (Zn) ?кг, 3 части.
Найти массы меди и цинка.
Решение.
5 + 3 = 8 (частей) --- всего частей в сплаве;
2ц4/5кг = 14/5 кг преобразование смешанного числа в неправильную дробь для удобства расчетов.
(14/5) : 8 = 14/40 = 7/20(кг) масса, приходящаяся на одну часть сплава;
(7/20) * 5 = 35/20 = 7/4 = 1ц3/4 (кг) --- масса меди в сплаве;
(7/20) * 3 = 21/20 = 1ц1/20 (кг) --- масса цинка в сплаве;
ответ: В сплаве 1ц 3/4 кг (или 1,75 кг) меди и 1ц1/20 кг (или 1,05 кг) цинка.
Проверка: 1ц3/4 + 1ц1/20 = 56/20 = 2ц4/5(кг), что соответствует условию.