2 Выполни задания. а) Рассмотри рисунки. Запиши, какая часть фигур закрашена. 6) Рассмотри единичный отре- зок на числовом луче. На сколь- ко частей он разделён? Сравни, что больше 1 2, 1 3. - или -, - или -. 4 4, 4 4.
1) 10•10 = 100 плиток образовали бы квадрат, если бы плиток хватило. Поскольку их не хватило, то плиток меньше 100.
2) В неполном ряду плиток при раскладывании по 8 не может быть 8 (это уже полный ряд), а в неполном ряду плиток при раскладывании по 9 не может быть 0 плиток (это значит, что нет неполного ряда), а это означает, что в неполном ряду плиток при раскладывании по 8 плиток может быть только 7, а в неполном ряду плиток при раскладывании по 9 может быть только 1 плитка. Разница как раз составляет 6 плиток, как указано в условии.
3) Представим себе, что есть n полных рядов плиток при раскладывании их по 8, и есть 7 плиток в неполном ряду. Можно перекладывать из неполного ряда по одной плитке к каждому ряду, так, что в каждом ряду образуется по 9 плиток. Так можно делать до тех пор, пока в неполном ряду не останется 1 плитка:
Уже много раз были подобные задачи. Учитесь, во-первых, искать вопросы, а во-вторых, применять тот же решения, даже если числа другие. На квадрат 10*10 не хватает, значит, плиток N < 100. При делении по 6 остаток 5, а при делении по 5 остаток 1. Только так может быть остаток по 6 на 4 больше, чем остаток по 5. Числа меньше 100, которые при делении на 6 дают остаток 5: 11; 17; 23; 29; 35; 41; 47; 53; 59; 65; 71; 77; 83; 89; 95. Из них числа 11, 41 и 71 дают остаток 1 при делении на 5. Я думаю, плиток было 71, при 11 и 41 сразу ясно, что их меньше 100, и никому не пришло бы в голову пытаться уложить их в квадрат 10*10.
Відповідь:
1) 10•10 = 100 плиток образовали бы квадрат, если бы плиток хватило. Поскольку их не хватило, то плиток меньше 100.
2) В неполном ряду плиток при раскладывании по 8 не может быть 8 (это уже полный ряд), а в неполном ряду плиток при раскладывании по 9 не может быть 0 плиток (это значит, что нет неполного ряда), а это означает, что в неполном ряду плиток при раскладывании по 8 плиток может быть только 7, а в неполном ряду плиток при раскладывании по 9 может быть только 1 плитка. Разница как раз составляет 6 плиток, как указано в условии.
3) Представим себе, что есть n полных рядов плиток при раскладывании их по 8, и есть 7 плиток в неполном ряду. Можно перекладывать из неполного ряда по одной плитке к каждому ряду, так, что в каждом ряду образуется по 9 плиток. Так можно делать до тех пор, пока в неполном ряду не останется 1 плитка:
Получаем уравнение
8n + 7 = 9n + 1
9n - 8n = 7 - 1
n = 6 рядов по 8 или по 9 плиток.
4) 8n+7 = 8•6+7=47+7=55 плиток.
Или
9n+1 = 9•6+1=54+1=55 плиток.
ответ: 55 плиток.
Покрокове пояснення: