М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Вика4445
Вика4445
11.02.2023 14:33 •  Математика

93. 1) Запиши число, представленное в виде суммы раз- рядных слагаемых, и прочитай его.
а) 5 . 100 + 1 10 + 9 . 1 в) 7 . 100 + 8 10
6) 8. 100 + 0 . 10 + 6 • 1 r) 9 · 10 + 2 . 1
2) Прочитай число и запиши его виде суммы раз-
рядных слагаемых: а) 314; б) 508; в) 340.
В

👇
Ответ:
Anhelodek
Anhelodek
11.02.2023

№ 1.

а) 5 · 100 + 1 · 10 + 9 · 1 = 500 + 10 + 9 = 519 - пятьсот девятнадцать;

б) 8 · 100 + 0 · 10 + 6 · 1 = 800 + 0 + 6 = 806 - восемьсот шесть;

в) 7 · 100 + 8 · 10 = 700 + 80 = 780 - семьсот восемьдесят;

г) 9 · 10 + 2 · 1 = 90 + 2 = 92 - девяносто два.

№ 2.

а) 314 = 3 · 100 + 1 · 10 + 4 - триста четырнадцать;

б) 508 = 5 · 100 + 0 · 10 + 8 - пятьсот восемь;

в) 340 = 3 · 100 + 4 · 10 = триста сорок.

4,5(19 оценок)
Открыть все ответы
Ответ:
Moldir94
Moldir94
11.02.2023
А) Здесь знаменатель не должен быть равен 0, т.к. на 0 делить нельзя, поэтому
х-2≠0
х≠2
Область определения D(f)=(-∞;2)∪(2;∞).
б) f(x)=√(x-3)+√(2-x)
Подкоренное выражение не может быть отрицательным, поэтому надо найти те х, при которых подкоренное выражение >0
x-3≥0    x≥3
2-x≥0    x≤2
Видим, что х не может быть одновременно больше 3 и меньше 2, для этой функции нет области определения.
в) f(x)=√(1-4x-5x^2)
Как и в предыдущем примере подкоренное выражение не может быть отрицательным, поэтому можем записать
1-4x-5x^2≥0
Решаем квадратное уравнение
-5x^2-4x+1
Находим дискриминант
D=b^2-4ac=(-4)^2-4*(-5)*1=16+20=36
Ищем корни
x₁=(-b-√D)/2a=(4-6)/-10=1/5
x₂=(-b+√D)/2a=(4+6)/-10=-1
То есть парабола пересекает ось абсцисс в двух точках, а ветви её смотрят вниз (а=-5<0), значит подкоренное выражение >0 на промежутке [-1;1/5]
Область определения D(f)=[-1;1/5].
4,8(87 оценок)
Ответ:
nek2017pro
nek2017pro
11.02.2023
З історії десяткових і звичайних дробів 
У Стародавньому Китаї вже користувалися десятковою системою заходів, позначали дріб словами, використовуючи міри довжини чи: цуні, частки, порядкові, шерстинки, найтонші, павутинки. Дріб виду 2,135436 виглядала так: 2 чи, 1 цунь, 3 частки, 5 порядкових, 4 шерстинки, 3 найтонших, 6 павутинок. Так записувалися дробу протягом двох століть, а в V столітті китайський вчений Цзю-Чун-Чжі прийняв за одиницю не чі, а чжан = 10 чи, тоді ця частина виглядала так: 2 чжана, 1 чи, 3 цуня, 5 часткою, 4 порядкових, 3 шерстинки, 6 найтонших, 0 павутинок. 
Попередниками десяткових дробів були шестидесятеричной дробу стародавніх вавилонян. Деякі елементи десяткового дробу зустрічаються в працях багатьох учених Європи в 12, 13, 14 століттях. 
Десяткову дріб за до цифр і певних знаків спробував записати арабський математик ал-Уклісіді в X столітті. Свої думки з цього приводу він висловив у "Книзі розділів про індійську арифметику". 
У XV столітті, в Узбекистані, поблизу міста Самарканда жив математик і астроном Джемшид Гияседдіна ал-Каші (дата народження невідома). Він гав за рухом зірок, планет і Сонця, в цій роботі йому необхідні були десяткові дробу. Ал-Каші написав книгу "Ключ до арифметики" (була видана у 1424 році), в якій він показав запис дробу в один рядок числами в десятковій системі і дав правила дії з ними. Вчений користувався декількома написання дробу: то він застосовував вертикальну риску, то чорнило чорного і червоного кольорів. Але ця праця до європейських вчених своєчасно не дійшов. 
Приблизно в цей же час математики Європи також намагалися знайти зручний запис десяткового дробу. У книзі "Математичний канон" французького математика Ф. Вієта (1540-1603) десяткова дріб записана так 2 135436 - дробова частина і підкреслювалася і записувалася вище рядки цілої частини числа. 
У 1585 р., незалежно від ал-Каші, фламандський вчений Симон Стевін (1548-1620) зробив важливе відкриття, про що написав у своїй книзі "Десята" (французькою мовою "De Thiende, La Disme"). Ця маленька робота (всього 7 сторінок) містила пояснення запису і правил дій з десятковими дробами. Він писав цифри дробового числа в один рядок з цифрами цілого числа, при цьому нумеруючи їх. Наприклад, число 12,761 записувалося так: 
1207À6Á1Â12 
або число 0,3752 записувалося так: 
3 7,5 ƒ2 ". 
Саме Стевіном і вважають винахідником десяткових дробів. 
Кома в записі дробів вперше зустрічається в 1592г., А в 1617р. шотландський математик Джон Непер запропонував відокремлювати десяткові знаки від цілого числа або коми, або точкою. 
Сучасну запис, тобто відділення цілої частини коми, запропонував Кеплер (1571) - (1630 рр..). 
У країнах, де говорять по-англійськи (Англія, США, Канада та ін), і зараз замість коми пишуть крапку, наприклад: 2.3 і читають: два точка три. 
4,6(58 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ