В метрополитене г. Чунцин (Китай) восемь линий. По данным о протяжённости линий чунцинского метрополитена построена круговая диаграмма. а) Укажите верные утверждения: 1) Протяжённость линий № 5 и № 6 в совокупности составляет около четверти общей протяжённости линий чунцинского метрополитена; 2) Линия № 4 не превосходит по протяжённости линию № 5; 3) Наименьшую протяжённость имеет линия № 10. б) Оцените (найдите приблизительно) протяжённость линии № 1, если известно, что общая протяжённость линий чунцинского метро составляет 296 км.
1. Алгоритм разложения числа на простые множители следующий: Текущий делитель = 2. Проверяем, делится ли число на текущий делитель. Если делится, то делим и проверяем снова. Если не делится, то увеличиваем текущий делитель на 1. Повторяем до тех пор, пока в результате деления не получим 1 или пока результат деления не совпадет с делителем.
На первых трех шагах делили на 2, пока не получили в результате деления 18 на 2 число 9. Оно не делится на два, проверяем следующий делитель = 3. В это примере результат деления совпал с текущим делителем.
Если же число простое, например 17, то
17 = 17 * 1;
мы остановимся, когда в результате деления увидим единичку.
НОД нескольких чисел найти несложно. Раскладываем каждое на простые множители, как описано выше, затем выбираем из разложения те, которые повторяются для ВСЕХ чисел.
Общей для всех является только одна 2, значит, НОД = 2. Если бы вместо 42 было число 84
84 = 2 * 42 = 2 * 2 * 21 = 2 * 2 * 3 * 7
то НОД был бы 2 * 2, т.к. в этом случае ОБЩИМИ были бы уже две двойки
НОК можно найти используя НОД: произведение всех чисел делим на НОД.
2. Да, это верно. Оно используется при приведении дробей к общему знаменателю.
3. Это не совсем дробь, корректнее назвать это частью числа или процентами числа. Перевод частей в проценты так же не составляет сложности - просто умножаем число частей на 100. Например, 0.23 = 0.23 * 100 = 23 процента.
0.23 * 200 - нахождение 23 процентов от числа 200.
а) верные утверждения 1 и 2
б) 296:8=37