М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mereysi11
mereysi11
12.08.2021 19:48 •  Математика

Условие задания:
Вычисли (В первое окошко пиши знак (+ или —), затем целое и дробь
- 12+14/15​


Условие задания:Вычисли (В первое окошко пиши знак (+ или —), затем целое и дробь- 12+14/15​

👇
Ответ:
анна2262
анна2262
12.08.2021

- 11 1/15

Пошаговое объяснение:

- 11 1/15

Это должно быть правильно

4,5(86 оценок)
Ответ:
Zubkub
Zubkub
12.08.2021

Пошаговое объяснение:

= 12 - 14/15 = 11 15/15 - 14/15 = 11 1/15

ответ : -11 1/15

4,6(31 оценок)
Открыть все ответы
Ответ:
ayserg1980ozvpli
ayserg1980ozvpli
12.08.2021

задачи по теории вероятностей, мы постоянно используем одну и ту же формулу, которая одновременно является классическим определением вероятности:Классическое определение вероятности: p = k/n где k — число благоприятных исходов, n — общее число исходов (см. «Тест по теории вероятностей»).И эта формула прекрасно работает до тех пор, пока задачи были легкими, а числа, стоящие в числителе и знаменателе — очевидными.Однако последние пробные экзамены показали, что в настоящем ЕГЭ по математике могут встречаться значительно более сложные конструкции. Отыскание значений n и k становится проблематичным. В таком случае на приходит комбинаторика. Ее законы работают там, где искомые значения не выводятся непосредственно из текста задачи.В сегодняшнем уроке не будет строгих формулировок и длинных теорем — они слишком сложны и, к тому же, совершенно бесполезны для решения настоящих задач B6. Вместо этого мы рассмотрим простые правила и разберем конкретные задачи, которые действительно встречаются на ЕГЭ. Итак, поехали!Число сочетаний и факториалыПусть имеется n объектов (карандашей, конфет, бутылок водки — чего угодно), из которых требуется выбрать ровно k различных объектов. Тогда количество вариантов такого выбора называется числом сочетаний из n элементов по k. Это число обозначается Cnk и считается по специальной формуле.Обозначение:Число сочетаний из n элементов по kВыражение n! читается как «эн-факториал» и обозначает произведение всех натуральных чисел от 1 до n включительно: n! = 1 · 2 · 3 · ... · n.Кроме того, в математике по определению считают, что 0! = 1 — подобный бред редко, но все же встречается в задачах по теории вероятностей.Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.К сожалению, в школе совершенно не умеют работать с факториалами. Кроме того, в формуле числа сочетаний очень легко запутаться: где стоит и что обозначает число n, а где — k. Поэтому для начала просто запомните: меньшее число всегда стоит сверху — точно так же, как и в формуле определения вероятности (вероятность никогда не бывает больше единицы).Для лучшего понимания разберем несколько простейших комбинаторных задач:Задача. У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими бармен может выполнить заказ?Тут все просто: есть n = 6 сортов, из которых надо выбрать k = 3 сорта. Число сочетаний можно найти по формуле:Число сочетаний из 6 элементов по 3 Задача. В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими можно это сделать?Опять же, всего у нас есть n = 20 студентов, а выбрать надо k = 2 студента. Находим число сочетаний:Число сочетаний из 20 элементов по 2

4,4(64 оценок)
Ответ:
may12312
may12312
12.08.2021

Выиграют все, так как все числа разбиваются на +и- 

победные числа 2016 и тд это будет +

из любого - за один ход можно попасть в +

из любого плюса за один ход попадаешь  только в -

лучший варинат ходить по +

плюсы это 7-12, 112-223, 2016 и тд

а минусы соответственно 1-6,  13-111, 224-2015

выиграет первый если умножит 1 на 7-9, тогда 2 получит 13-111, тогда первый получит  112-223( следующим ходом)  тогда второй сможет получит 224-2015, ну а первый при любом раскаладе получит больше 2015, а значит и победи

Подробнее - на -

Пошаговое объяснение:

4,7(77 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ