С6 на окружности радиуса 3 с центром в вершине равнобедренного треугольника abc взята точка p .известно , что ab=ac=5, bc=6, а треугольники apb и apc равновелики.найдите расстояние от точки p до прямой bc , если известно ,что оно меньше 6.
центр окружности радиуса 12 О окружность касается продолжений сторон в точках К и Л, а основания АС в точке Р КА=АР=РЛ=СЛ=18/2=9
соединим точку О и С, О и А треугольник РОС прямоугольный (ОР радиус в точку касания) райдем по пифагору ОС=15., АО=15 находится аналогично треугольнк АВС равен треугольнику АОС радиус вписанной окружности = S/р Р= 15+15+18/2=24 S=18*12/2=108 r=4.5
Если 2*х+3>0 то х>-1,5. Для 4-х>0 имеем х<4, то есть х лежит в пределах от -1,5 до 4. Теперь раскрываем модуль. В указанном диапазоне оба модуля положительны, поэтому 2*х+3+4-х=8⇒х+7=8⇒х=1. Теперь смотрим диапазон когда модули отрицательны, то есть -1,5>х>4, имеем -2*х-3-4+х=8⇒-х-7=8⇒х=-15. Теперь пусть левый модуль отрицателен (х<-1,5), правый положителен х<4, то есть х<-1,5, тогда -2*х-3+4-х=8⇒-3*х+1=8⇒-3*х=7⇒х=-2,33333. И наконец пусть правый модуль отрицателен (х>4), левый положителен х>-1,5, то есть х>4, тогда 2*х+3-4+х=8⇒3*х-1=8⇒3*х=9⇒х=3. Меньший корень равен -15, а утроенный равен минус 45.
Проведём осевое сечение пирамиды через ребро SC. Получим треугольник SCД. SД - апофема боковой грани, SД = √(5²-(4/2)²) = √(25-4) = √21. СД как высота равностороннего треугольника в основании пирамиды равно: СД = 4*cos30° = 4*(√3/2) = 2√3. В треугольнике SCД высота ДН на сторону SC является одновременно и высотой в треугольнике АНВ, который является заданным сечением. Найдём косинус угла С: cos C = (5²+(2√3)²-(√21)²)/(2*5*2√3)= 16/(20√30 = 4/(5√3). Тогда синус этого угла равен: sin C = √(1-cos²C) = √(1-(16/75)) = √59/(5√3). Высота ДН равна: ДН = СД*sin C= 2√3*(√59/(5√3)) = 2√59/5. Площадь заданного сечения равна: S = (1/2)*4* 2√59/5 = 4√59/5 = 6.1449166.
центр окружности радиуса 12 О
окружность касается продолжений сторон в точках К и Л, а основания АС в точке Р
КА=АР=РЛ=СЛ=18/2=9
соединим точку О и С, О и А
треугольник РОС прямоугольный (ОР радиус в точку касания) райдем по пифагору ОС=15., АО=15 находится аналогично
треугольнк АВС равен треугольнику АОС
радиус вписанной окружности = S/р
Р= 15+15+18/2=24
S=18*12/2=108
r=4.5