Пусть t - время , которое затратит инженер Петров, чтобы попасть на работу вовремя .
Приезд на работу раньше положенного времени : Время (t - 2.5 ) ч. (т.к. 2 ч. 30 мин. = 2 30/60 ч. = 2 1/2 ч. = 2,5 ч.) Скорость 40 км/ч Расстояние 40*(t - 2.5) км
Приезд на работу позже положенного времени: Время (t + 2) часа Скорость 10 км/ч Расстояние 10(t+2) км
Зная, что расстояние от дома до работы одинаковое , составим уравнение: 40(t - 2.5) = 10(t+2) 40t - 100 = 10t +20 40t - 10t = 20+100 30t = 120 t=120/30 t= 4 (часа) время Расстояние от дома до работы: 40 (4-2,5) = 40 *1,5 = 60 (км) 10 (4+2) = 10 * 6 = 60 (км) Необходимая скорость: 60 : 4 = 15 (км/ч)
ответ: 15 км/ч скорость , с которой должен ехать Петров, чтобы приехать на работу вовремя.
Чтобы найти сумму векторов, заданных своими координаты, необходимо просуммировать их соответствующие координаты
Два вектора равны, если их соответствующие координаты равны, то есть, получаем следующую систему уравнений: Запишем эту систему в матричной форме и решим методом Гаусса.
Получаем решения данной системы уравнений с тремя переменными
.28 _94|_2___ . 38 . 29 .27
3 47 2 2 3
___
84 76 58 81
.26
2
52