
Формула Эйлера для многогранников.
Пусть В — число вершин выпуклого многогранника, Р — число его ребер и Г — число граней. Тогда верно равенство В+Г=Р+2.
Октаэдр - многогранник с 8 гранями. (Грани- треугольники)У него 6 вершин и 12 ребер.
8+6=12+2. Формула Эйлера верна.
Додекаэдр - многогранник, состоящий из граней- пятиугольников.Этих граней 12.У него 30 ребер и 20 вершин.
20+12=30+2 Формула Эйлера верна.
Икосаэдр - многогранник, состоящий из 20 граней-треугольников.
У него также, как и у додекадра,
30 ребер и 20 вершин.
20+12=30+2 Формула Эйлера верна.
Она была довольно симпатичной, но вот только ей так хотелось быть похожей на десятичную! Особенно ей нравились бесконечные десятичные дроби: ведь это так замечательно и заманчиво – уноситься вдаль, в даль, которой нет конца! Сколько там интересного можно повидать.
Но обыкновенная дробь продолжала оставаться обыкновенной. А ещё ей было обидно, что её называют обыкновенной. Разве она обыкновенная? Она необыкновенная! Так удивительно – ни у каких чисел больше нет числителя и знаменателя, а у неё есть. Но всё же ей так хотелось иногда стать бесконечной десятичной дробью.
И вот однажды…
Однажды кто-то придумал числитель разделить на знаменатель. И, оказывается, так просто обыкновенная дробь может стать десятичной!
А наша дробь как раз оказалась бесконечной! И понеслась она далеко-далеко, в далёкие края!