Товар в магазине стоил 5400 руб. Сначала стоимость снизили на 20 %, а потом повысили на 16 %. Какова конечная стоимость товара? Стоимость товара после понижения цены: руб.
16 минут = 16/60 часа = 4/15 часа. Пусть х - скорость автомобиля до переезда. Тогда х+10 - скорость после переезда. 80/х - время, которое автомобиль затратил бы на путь, если бы двигался с первоначальной скоростью. 80/(х+10) - время, которое автомобиль затратил на путь, двигаясь с увеличенной на 10 км/ч скоростью. Уравнение: 80/х - 80(х+10) = 4/15 Умножим обе части уравнения на 15х(х+10): 15•80х(х+10)/х - 15•80х(х+10)/(х+10)= 15•4х(х+10)/15 1200(х+10) - 1200х = 4х(х+10) 1200х + 12000 - 1200х = 4х² + 40х 4² + 40х - 12000 = 0 Разделим обе части уравнения на 4 х² + 10х - 3000 = 0 D = 10² - 4(-3000) = 100 + 12000 = 12100 √D = √12100 = 110 х1 = (-10 - 110)/2 = -120/2 = -60 - не подходит по условию задачи х2 = (-10 + 110)/2 = 100/2 = 50 км/ч - первоначальная скорость.
16 минут = 16/60 часа = 4/15 часа. Пусть х - скорость автомобиля до переезда. Тогда х+10 - скорость после переезда. 80/х - время, которое автомобиль затратил бы на путь, если бы двигался с первоначальной скоростью. 80/(х+10) - время, которое автомобиль затратил на путь, двигаясь с увеличенной на 10 км/ч скоростью. Уравнение: 80/х - 80(х+10) = 4/15 Умножим обе части уравнения на 15х(х+10): 15•80х(х+10)/х - 15•80х(х+10)/(х+10)= 15•4х(х+10)/15 1200(х+10) - 1200х = 4х(х+10) 1200х + 12000 - 1200х = 4х² + 40х 4² + 40х - 12000 = 0 Разделим обе части уравнения на 4 х² + 10х - 3000 = 0 D = 10² - 4(-3000) = 100 + 12000 = 12100 √D = √12100 = 110 х1 = (-10 - 110)/2 = -120/2 = -60 - не подходит по условию задачи х2 = (-10 + 110)/2 = 100/2 = 50 км/ч - первоначальная скорость.
После понижения цены: 4320
ответ: 5011,2
Пошаговое объяснение:
После понижения цены товар стал стоить 80% от начальной цены (100%-20%)
Вычислим: 5400 × 0.80 = 4320.
После повышения цены товар стал стоить 116% от цены в 4320 (100%+16%)
Вычислим:
4320 × 1.16 = 5011.2
5011.2 - это конечная стоимость товара.