Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:
2 3 -1 2
1 -1 3 -4
3 5 1 4
x1 x2 x3
Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (-1). Умножим 2-ую строку на (2). Добавим 2-ую строку к 1-ой:
0 -5 7 -10
1 -1 3 -4
3 5 1 4
Умножим 2-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0 -5 7 -10
0 8 -8 16
3 5 1 4
Умножим 1-ую строку на (8). Умножим 2-ую строку на (5). Добавим 2-ую строку к 1-ой:
0 0 16 0
0 8 -8 16
3 5 1 4
Определим ранг основной системы системы.
0 0 16
0 8 -8
3 5 1
Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду
Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля. Ранг этой системы равен rangA=3.
Определим ранг расширенной системы системы.
0 0 16 0
0 8 -8 16
3 5 1 4
Ранг этой системы равен rangB=3.
rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной.
Этот минор является базисным.
0 0 16 0
0 8 -8 16
3 5 1 4
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
16x3 = 0
8x2 - 8x3 = 16
3x1 + 5x2 + x3 = 4
Методом исключения неизвестных находим:
x3 = 0
x2 = 2
x1 = - 2
Система является определенной, т.к. имеет одно решение.
Решение системы линейных уравнений по методу Крамера
A = 2 3 -1 B = 2
1 -1 3 -4
3 5 1 4
|A|= -16
Dx1 = 2 3 -1
-4 -1 3 = 32 x1 = -2
4 5 1
Dx2 = 2 2 -1
1 -4 3 = -32 x2 = 2
3 4 1
Dx3 = 2 3 2
1 -1 -4 = 0 x3 = 0
3 5 4
Для нахождения определителей удобно применять схему Саррюса (или диагональные полоски).
Вот определитель основной матрицы.
2 3 -1 2 3
1 -1 3 1 -1
3 5 1 3 5
-2 27 -5 -3 -30 -3
-16
Определение и правила вычитания векторов
Рассмотрим два вектора \bar{a} и \bar{b} (рис. 1).
Вычитание векторов
ОПРЕДЕЛЕНИЕ
Разностью двух векторов \bar{a} и \bar{b} называется такой третий вектор \bar{c}, сумма которого с вектором \bar{b} равна вектору \bar{a}:
\[\bar{a}-\bar{b}=\bar{c}\Leftrightarrow \bar{c}+\bar{b}=\bar{a}\]
Если задан вектор \bar{a}, то можно построить противоположный ему вектор -\bar{a}, равный по длине, но противоположно направленный. Сумма противоположных векторов равна нулевому вектору:
\[\bar{a}+\left(-\bar{a}\right)=\bar{0}\]
Таким образом, разность \bar{a}-\bar{b} можно записать в следующем виде:
\[\bar{a}-\bar{b}=\bar{a}+\left(-\bar{b}\right)\]
То есть разность двух векторов равна сумме уменьшаемого и вектора, противоположного вычитаемому.
Контрольные работы на заказ
Решаем контрольные по всем предметам. 10 лет опыт! Цена от 100 руб, срок от 1 дня!
Онлайн заказЦены и сроки
Нужно решить задачи?
Решаем задачи любой сложности от 1 дня! Недорого и точно в срок. Заказывай!
Наши услугиБыстрый заказ
Правило треугольника для разности векторов
Чтобы графически продемонстрировать разность векторов, необходимо отложить от произвольной точки вектор \bar{a}, из его начала вектор \bar{b}. Тогда вектор, начало которого совпадает с концом вектора \bar{b}, а конец – с концом вектора \bar{a}, и будет искомым вектором разности \bar{a}-\bar{b} (рис. 2).
Правило треугольника для разности векторов
Правило параллелограмма разности векторов
Если два неколлинеарных вектора \bar{a} и \bar{b} имеют общее начало (рис. 3), то разностью этих вектор есть вектор, совпадающий с диагональю параллелограмма, построенного на этих векторах \bar{a} и \bar{b}, причем начало этой диагонали совпадает с концом вектора \bar{b}, а конец – с концом вектора \bar{a}.
Правило параллелограмма разности векторов
Если векторы \bar{a} и \bar{b} заданы своими координатами в некотором базисе: \bar{a}=\left(a_{1} ;\; a_{2} \right),\ \bar{b}=\left(b_{1} ;\; b_{2} \right), то, чтобы найти координаты их разности \bar{a}-\bar{b}, необходимо от координат вектора \bar{a} отнять соответствующие координаты вектора \bar{b}:
Пошаговое объяснение: Я ЗНАЮ ТОЛЬКО КАК.
9+х=-8
х=-8-9
х=-17
ответ: -17
Пошаговое объяснение:
Это уравнение с отрицательными числами. Они решаются также, как и простые уравнения, но только тут отрицательные числа.