ab = cd, bc = ad
2. противоположные стороны прямоугольника параллельны:ab||cd, bc||ad
3. прилегающие стороны прямоугольника всегда перпендикулярны:ab ┴ bc, bc ┴ cd, cd ┴ ad, ad ┴ ab
4. все четыре угла прямоугольника прямые:∠abc = ∠bcd = ∠cda = ∠dab = 90°
5. сумма углов прямоугольника равна 360 градусов:∠abc + ∠bcd + ∠cda + ∠dab = 360°
6. диагонали прямоугольника имеют одинаковой длины:ac = bd
7. сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:2d2 = 2a2 + 2b2
8. каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.9. диагонали прямоугольника пересекаются и в точке пересечения делятся пополам: ao = bo = co = do = d210. точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности11. диагональ прямоугольника является диаметром описанной окружности12. вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:∠abc + ∠cda = 180° ∠bcd + ∠dab = 180°
13. в прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).Для удобства записи будем считать, что заданы точки плоскости:
A(–6;1; –5), B(7; –2; –1) и C(10; –7;1), и точка S(3;–4; –6).
Плосокость ABC задана точками A(xa, ya, za), B(xb, yb, zb), C(xc, yc, zc).
Координаты точки A:
xa = -6
ya = 1
za = -5.
Координаты точки B:
xb = 7
yb = -2
zb = -1.
Координаты точки C:
xc = 10
yc = -7
zc = 1.
Задана точка S(xs, ys, zs).
Координаты точки S:
xs = 3
ys = -4
zs = -6.
Точка M лежит на плосокости ABC.
Отрезок SM перпендикулярен плосокости ABC.
Точка M является проекцией точки S на плосокость ABC.
Найти координаты точки M(xm, ym, zm) и длину отрезка SM.
Для нахождения координат точки M(xm, ym, zm) составим систему из трёх уравнений с тремя неизвестными, исходя из следующих трёх условий.
Точка M лежит в плоскости ABC;
Отрезок SM перпендикулярен прямой AB;
Отрезок SM перпендикулярен прямой AC.
Это равносильно трём условиям:
Смешанное произведение векторов AM, AB, AC равно нулю: AM •[ABxAC] = 0
Скалярное произведение векторов SM и AB равно нулю: SM • AB = 0
Скалярное произведение векторов SM и AC равно нулю: SM • AС = 0
Решая эту систему, найдём координаты точки M(xm, ym, zm).
Плоскость ABC задана тремя точками:
A(-6, 1, -5)
B(7, -2, -1)
С(10, -7, 1)
Задана точка S(3, -4, -6)
Проекция точки S на плоскость ABC имеет координаты M(xm, ym, zm)
xm = 7056 / 3528 = 2.
ym = -10584 / 3528 = -3.
zm = -7056 / 3528 = -2.
|SM| = sqrt(224042112) / 3528 = 4,24264.
Это расстояние было найдено по формуле:
|SM| = sqrt((xm-xs)*(xm-xs)+(ym-ys)*(ym-ys)+(zm-zs)*(zm-zs)).
Координаты векторов AB, AC, AS равны:
AB = (13, -3, 4).
AC = (16, -8, 6).
AS = (9, -5, -1).
Координаты векторного произведения AB и AC
[ABxAC] = (14, -14, -56).
Модуль векторного произведения AB и AC
|[ABxAC]| = sqrt(3528) = 59,39697.
Модуль смешанного произведения AS, AB, AC
|AS[ABxAC]| = 252.
Расстояние от точки S до плоскости ABC вычисляется по формуле
|SM| = |AS[ABxAC]| / |[ABxAC]|.
|SM| = 252 / sqrt(3528) = 3 * sqrt(2) = 4,24264.
Найдены координаты проекции точки S на плоскость ABC:
M(2, -3, -2).
Точка Р(3;–4; –6).
Теперь находим симметричную точку Q по фоормуле Q = 2M - P.
ответ: Q(1; -2; 2)