А) n^4+64=(n^2)^2 + 2*n^2*8 + 8^2 - 2*n^2*8=(n^2+8)^2-(4n)^2= (n^2-4n+8)*(n^2+4n+8) При n>0 n^2-4n+8 < n^2+4n+8. Поэтому если n^2-4n+8 > 1, то n^2+4n+8 > 1, а все произведение - составное число. n^2-4n+8>1 достигается при любых значениях n: n^2-4n+7>0 D=(-4)^2-4*7=-12<0 Причем n^2-4n+8=1 ни при каких n. Таким образом, n^4+64 является составным при любых натуральных n. б) n^4+n^2+1=n^4+2n^2+1-n^2=(n^2+1)^2-n^2=(n^2-n+1)(n^2+n+1) При n > 0 n^2-n+1<n^2+n+1. Рассмотрим случай, когда n^2-n+1=1. n^2-n=0, n=0 или n=1. Соответственно, при n=1 n^4+n^2+1=(1^2-1+1)(1^2+1+1)=3 - простое число. n=1 не подходит. Если n^2-n+1>1, n > 1 - каждая из скобок больше 1. То есть произведение этих скобок дает составное число. Таким образом, n^4+n^2+1 является составным для всех натуральных n, кроме 1.
а) 8=7 6/6
б) 9=8 4/4
в) 14=13 10/10
г) 9=8 5/5
д) 6=5 3/3
е) 12=11 7/7
ж) 15=14 8/8
з) 24=23 11/11
и) 3=2 4/4
к) 9=8 7/7
л) 28=27 10/10
м) 40=39 21/21