Пошаговое объяснение:
1) неравенства х ≥ -8 и х + 3 ≥ -5; являются равносильными, так как 2-е неравенство преобразуется в х ≥ -8:
х + 3 ≥ -5 ⇒ х ≥ -5 - 3 ⇒ х ≥ - 8
2) неравенства у ≤ 10 и у - 1 ≤ 9; являются равносильными, так как 2-е неравенство преобразуется в у ≤ 10:
у - 1 ≤ 9; ⇒ у ≤ 9 + 1 ⇒ у ≤ 10
3) неравенства х > 5 и 5х > 25 являются равносильными, так как 2-е неравенство преобразуется в
5х > 25 ⇒ x > 25 : 5 ⇒ x > 5
4) неравенства х < 3 и -3х > -9 являются равносильными, так как 2-е неравенство преобразуется в
-3х > -9 ⇒ -х > -9 : 3 ⇒ -x > -3 ⇒ x < 3
5) неравенства х < 20 и 0.5 (х+3) > 10 не являются равносильными, так как 2-е неравенство преобразуется в
0.5 (х+3) > 10 ⇒ 0,5х + 1,5 > 10 ⇒ 0.5x > 10 - 1.5 ⇒ 0.5x > 8.5 ⇒
⇒ x > 17
6) неравенства у ≥ -16 и -0.25у ≤ 4 являются равносильными, так как 2-е неравенство преобразуется в
-0.25у ≤ 4 ⇒ -y ≤ 16 ⇒ y ≥ - 16
x1+x2=-3(A+1)/3=-(A+1),
x1*x2=A^2 / 3
Выразим сумму кубов через сумму и произведение корней:
x1^3+x2^3 = (x1+x2)(x1^2-x1*x2+x2^2) =
(x1+x2)(x1^2+2x1*x2+x2^2-3x1*x2) =
(x1+x2)((x1+x2)^2-3x1*x2) =
-(A+1)((-(A+1))^2-3*(A^2 / 3)) =
-(A+1)(A^2+2A+1-A^2) =
-(A+1)(2A+1) = -2A^2-3A-1
Сумма кубов - функция от параметра A: f(A) = -2A^2-3A-1
Найдем точку максимума функции:
f'(A) = -4A-3
При f'(A)=0: -4A-3 = 0 => A = -3/4.
f'(A) > 0 при A < -3/4
f'(A) < 0 при A > -3/4
Это значит, что A=-3/4 - точка максимума функции, а значит, при A=-3/4 сумма кубов принимает наибольшее значение.