Пошаговое объяснение:1) f(x)= 2x²-3x+1 , [-1;1] ⇒ f'(x)= 4x-3, найдём критические точки: 4х-3=0, ⇒ х = 3/4=0,75 ∈[-1;1]. Найдём значения функции в критической точке и на концах данного промежутка: f(3/4)= 2·(3/4)²- 3·3/4 +1 =9/8 -9/4 + 1 = -1/8 ; f(1) = 0; f(-1)=6 ⇒ max f(x)=f(-1)=6; minf(x)=f(3/4)=-1/8
2)f(x)=3x²-4 на [2;4] ⇒ f'(x)=6x 6x=0, x=0-крит. точка, но x=0∉ [2;4] ⇒ Найдём значения функции на концах данного промежутка: f(2)= 3·2²-4= 12-4=8 f(4)=3·4² - 4= 48-4=44 ⇒ max f(x)=f(-4)=44; minf(x)=f(2)=8 3)f(x)=x²-1 на [0;3]⇒ f'(x)=2x , 2x=0 x=0 -критическая точка х=0 ∈ [0;3]. Найдём значения функции в критической точке и на концах данного промежутка: f(0) =0²-1=-1; f(3)=3²-1=8 ⇒max f(x)=f(3)=8; minf(x)=f(0)= -1
Пусть скорость по шоссе будет х км/ч, а скорость по лесной дороге у км/ч, так как нам известно что скорость на шоссе была на 4 км/ч больше, чем скорость на лесной дороге . Так как весь путь составил 40 км, а по времени составил 2 ч по лесной дороге и 1 ч по шоссе, получим систему уравнений:
х – у = 4;
x + 2y = 40.
Выведем из первого уравнения у:
у = х – 4, и подставим его во второе уравнение, получим:
x + 2x – 8 = 40;
3х – 8 = 40;
3х = 48;
х = 16.
Тогда у = 16 – 4 = 12.
Следовательно скорость по лесу составит 12 км/ч, а по шоссе 16 км/ч.
ответ: t= 15 часов.
Пошаговое объяснение:
Решение.
Скорость опережения равна разности скоростей
V= 110-90=20 км/час.
S=vt; 300 = 20t;
20t=300;
t= 15 часов.