М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
HAPKOMAH2281
HAPKOMAH2281
04.10.2021 16:32 •  Математика

В урні a білих і b чорних куль (a≥2; b≥2). З урни виймають відразу 2 кулі. Знайти ймовірність того, що кулі одного кольору.

👇
Открыть все ответы
Ответ:
Герб  — это условное изображение, являющееся символом и отличительным знаком государства, города, рода, отдельного лица, отражающее исторические традиции . Изучением гербов занимается геральдика.
Эмблема — условное изображение идеи в рисунке и пластике, которому присвоен тот или другой смысл.
Герб нередко ныне именуется эмблемой, символом. Между данными терминами обычно ставится знак равенства. Интересно, что раньше различия меж ними существовало: авторы работ по геральдике, противопоставляли герб эмблеме, эмблему - символу. В их понимании эмблема - условное изображение идеи в рисунке или пластике. Символ выражает ту же идею словами и не является описанием эмблемы. Отличие герба от эмблемы они видели, прежде всего в изображения: "Эмблемы просто, а гербы в щитах, известное очертание имеющих, изображаются". Определение, отличающее эмблему от герба в его изобразительной, так сказать, конструкции, можно принять и сегодня. Герб действительно составлялся по особым правилам (условиям) . Так же герб не может выбираться и меняться произвольно, как фабричное клеймо, торговая марка, фирменный знак - различного рода эмблемы. Рисунок герба чаще всего фиксируется законодательным актом. Таким образом, герб должен восприниматься как правовой знак.
4,7(40 оценок)
Ответ:
Юліяcoolgirl
Юліяcoolgirl
04.10.2021
Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0.  Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.

Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.

Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f '(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.

Таким образом, касательная МТ имеет вид: y=f '(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:

f (х0) =f '(х0)·х0+b.

Отсюда b=f (х0) - f '(х0)·х0. Подставляем это значение b в равенство:  y=f '(х0)·x+b. Тогда:

y =f '(х0)·х+f (х0) - f '(х0)·х0. Упростим.

y=f (х0)+(f '(х0)·х - f '(х0)·х0)  или 

 y=f (х0)+f '(х0)(х - х0).  Это и есть искомое уравнение касательной МТ.
4,7(82 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ