ответ: min(f, D) = 0, max(f, D) = 3/2
Пошаговое объяснение:
минимум 0 - очевидно (x=0, y = 0 и для любых x, y из D x>=0, y>=0).
xy - площадь прямоугольника со сторонами x, y. Значит, нам нужно "вписать" внутрь треугольника прямоугольник максимальной площади. Ясно, что одна из вершин (а конкретнее - точка (x; y)) должна лежать на гипотенузе BC. Найдем уравнение гипотенузы. Уравнение в отрезках x/2+y/3 = 1, откуда y = -3/2*x+3. Заметим, что т.к. (x; y) лежит на этой прямой, то верно равенство xy=-3/2x^2+3x - парабола с ветвями вверх => достигает максимального значения в вершине x0 = -3/(-2*3/2) = 1 =>xy=-3/2+3 = 3/2.
х книг было в 1 шкафу
4х книг было во 2 шкафу
х + 17 книг стало в 1 шкафу
4х - 25 стало во 2 шкафу.
ПО условию известно, что огда в первый шкаф положили 17 книг,а из второго взяли 25,то в обоих шкафах стало поровну.
4х - 25 = х + 17
4х - х = 17 + 25
3х = 42
х = 14
14 книг было в 1 шкафу
4 * 14 = 56 книг было во 2 шкафу